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(a) Shredded Piece (b) User-Drawn ‘Hallucination’ (in red) (c) Matched Neighbor

Figure 1: (a) A piece of a shredded document with cut off letters ‘N’ and ‘T’ written in black ink is displayed. We use human-
drawn templates (in red, (b)) to find the best matching neighbor (c) using a standard computer vision algorithm. This approach,
which we call hallucination, significantly outperforms humans and computers working in isolation.

Abstract

We introduce a mixed-initiative approach for document re-
construction that can significantly reduce the amount of time
and effort required to reassemble a document from shredded
pieces or an artifact from broken fragments. We focus in par-
ticular on the hardest subproblem, which is the problem of
identifying a matching neighbor for any given piece. Our ap-
proach, called hallucination, combines human and machine
intelligence by leveraging people’s ability to draw what a
neighboring piece may look like, and then using the drawing
as a template based on which the computer computes likely
matches. Experiments on a puzzle from the DARPA Shredder
Challenge demonstrate that the hallucination approach sig-
nificantly reduces the search space for identifying a match,
outperforming humans and computers working in isolation.

Introduction
Over the last decade, there has been a rise in systems
that leverage human and machine intelligence for solving
complex problems that neither can solve alone. Such sys-
tems take advantage of human abilities—particularly in vi-
sion, natural language, and pattern recognition—to han-
dle instances and aspects of problems that are difficult for
computers. The ESP game (von Ahn and Dabbish 2008),

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

FoldIt (Cooper et al. 2010), and reCAPTCHA (von Ahn et
al. 2008) are a few examples of successful systems that draw
on human contributors and machine computations to tackle
problems in image labeling, protein folding, and text digiti-
zation.

An interesting problem that can benefit from harnessing
a mix of human and machine intelligence is document re-
construction. Given a document or artifact that has been
broken up into many smaller pieces, the goal is to recon-
struct the document or artifact to its original by arranging
the pieces into their correct relative positions and orienta-
tions. The problem has natural applications in archaeology
and art as well as in forensics and investigation sciences.

An important subproblem in document reconstruction is
finding pairwise matches; that is, figuring out for a given
piece what its neighboring pieces are. This subproblem is
difficult for humans alone and for computers alone. For hu-
mans, there are two major challenges. One is scale: for each
piece, finding a matching neighbor requires a linear scan
across all unmatched pieces, which is expensive when there
is a large number of pieces. Another is confirming a match: a
match requires having the pieces in the correct orientation
and relative positions, and figuring out how two pieces may
or may not connect requires effort and is non-trivial.

The tedium of manual reassembly of fragmented pieces
led to numerous efforts in automated reconstruction of doc-



uments and artifacts. Early work on apictorial jigsaw puz-
zles (Freeman and Garder 1964) focuses on using piece con-
tours to perform pairwise matches. Since then other local
matching algorithms have been suggested that use content-
based features such as colors and textures (Ukovich et al.
2004; Toler-Franklin et al. 2010). While these approaches
can help reduce the search space, their effectiveness de-
pends largely on the quality of features. For example, in set-
tings where contours are non-discriminative, automatic re-
construction is difficult if not impossible.

One advantage that humans have over machines is that
humans are much more efficient at abstracting and matching
visual cues across piece borders based on their content. For
example, a person looking at a piece of a shredded document
can recognize a letter that is only partially present, and an
experienced archaeologist looking at a particular piece of
a broken artifact can recognize unique patterns that extend
beyond the fragment. Unfortunately, for a human to find a
matching piece still requires scanning through the pieces,
which is expensive when there are many pieces. Given that
such knowledge is often domain-specific and hard to encode,
it is also difficult to build automated systems that can fully
take advantage of it.1

In this paper, we introduce a novel mixed-initiative ap-
proach for document reconstruction that we call halluci-
nation. Hallucination integrates human and machine intel-
ligence by having humans draw based on a single piece
what they think a neighboring piece may look like, and then
having the machine perform template matching using these
drawings to find pairwise matches (see Figure 1). Halluci-
nation takes advantage of people’s ability to look at the con-
tent on a piece and know something about the content on a
neighboring piece, and to express this knowledge naturally
by drawing. These drawings can then be treated as templates
that the machine can use to tractably compute and identify
the best matching pieces. Hallucination thus aims to address
the challenges with both manual and automated reconstruc-
tion approaches: human knowledge about potential matches
is passed on to the computer in a natural manner, and the
computer uses this knowledge to expedite the search for the
correct match.

To test the hallucination method, we implement a pro-
totype system for identifying pairwise matches for recon-
structing a shredded document from the DARPA Shred-
der Challenge. Experiments demonstrate that the hallucina-
tion method significantly outperforms humans or machines
working on this problem in isolation, requiring up to 27%
fewer pieces to be scanned for human verification over a ma-
chine algorithm and up to 54% fewer pieces than a person
scanning the pieces at random. We suggest a number of areas
for future work, and highlight how the hallucination method
can be utilized in a variety of settings and integrated as part
of a complete document reconstruction system.

1An automated system would require as features information
about content across piece borders; such a system thus needs to
consider not only recognizing ‘full content’ (e.g., full handwritten
characters) but also ‘partial content’ (e.g., handwritten characters
that are cutoff at arbitrary positions).

Related Work
Recognizing the challenges in document reconstruction,
DARPA issued the Shredder Challenge in Fall 2011.2 The
challenge contained a number of shredded documents with
handwritten text and images that needed to be reconstructed
to answer questions based on their content. There were a
total of five puzzles of increasing difficulty, ranging from
hundreds to thousands of pieces. Given the regularity of the
shredded pieces and the imprecision of shape contours, it is
difficult for a machine-based approach to take advantage of
piece contours to identify matches. Teams competing in the
challenge used a variety of approaches, with some using ma-
chine vision algorithms to identify likely matches, that were
then passed on to human contributors for verification and
manual matching. The hallucination method seeks to better
integrate human and machine intelligence by involving hu-
mans in the process of identifying likely matches by using
their drawings to reduce the search space.3

Our template-based hallucination approach complements
feature-based approaches for identifying pairwise matches,
and applies even when features such as contours are non-
discriminative. Like other pairwise matching algorithms, the
hallucination method can be integrated as part of a global as-
sembly strategy (Wolfson et al. 1988; Castañeda et al. 2011)
that utilizes results from pairwise matches to completely
solve the puzzle while taking into account global constraints
and being able to recover from errors.

Template matching is a standard computer vision tech-
nique for finding parts of an image that match or are sim-
ilar to a template image (see, e.g., (Brunelli 2009) for
an overview). Many vision and graphics applications such
as object tracking (Mao et al. 2011), image retargeting
(content-aware changes to the aspect ratio) (Simakov et al.
2008), and image completion (filling of unwanted regions
with plausible content) (Criminisi, Perez, and Toyama 2003)
make use of template matching. In such applications, tem-
plates are typically patches in the underlying image. For
document reconstruction, templates are not readily avail-
able, and are instead created by contributors as part of the
hallucination process.

For the hallucination method to be feasible, it is important
to be able to check a template against a large set of pieces
efficiently. In situations where matches occur at a sparse set
of pixel locations (e.g., we can restrict checking of hand-
writing templates to pixels that are part of the ink regions of
pieces) and pieces can be aligned up to a few orientations
(e.g., sheets of paper may include lines that can be used to
align snippets up to flips), matches can be computed at in-
teractive rates by calculating pairwise cross-correlations in
a straightforward manner. In more complex settings where
templates either have to be scaled and rotated to best match
with a neighbor and matches occur at a dense set of interest

2See archive.darpa.mil/shredderchallenge/
3Only one team successfully solved all the puzzles, doing so

after spending 600 man-hours. As the winning team’s approach still
required a significant amount of human effort and used custom-
tailored algorithms, it may not scale well to more difficult instances
or apply to other document or artifact reconstruction tasks.



Figure 2: Puzzle 1 from the DARPA Shredder Challenge
(left) and its solution (right). The puzzle contains 227 pieces.

points, techniques introduced in recent works such as Patch-
Match (Barnes et al. 2009) and its generalization (Barnes et
al. 2010) and extensions (Korman and Avidan 2011) can be
used to reduce computation time and space complexity.

Our work is also related to the larger body of previous
efforts in leveraging human computation for vision tasks.
Many works focus on how to efficiently and accurately col-
lect labeled annotations that can be used to improve the per-
formance of machine vision algorithms (Vijayanarasimhan
and Grauman 2011a; 2011b; Welinder et al. 2010). Other
works take advantage of human abilities in new ways, e.g.,
to build a crowd kernel for judging object similarity (Tamuz
et al. 2011), or to gather human understandable attributes
that best help to discriminate between objects (Parikh and
Grauman 2011). Directions have also led to interactive vi-
sion systems that involve humans in the loop, e.g., for object
classification (Branson et al. 2010). To the best of our knowl-
edge, we are the first to present a human-directed, template-
based technique for document reconstruction.

Problem Definition
Consider a document or artifact D that has been broken
into many pieces K = {p1, . . . , pk}, some of which may
be missing. The document reconstruction problem asks for
an assignment of coordinates and orientations to available
pieces, such that the relative positions and orientations of
the pieces are correct with respect to the actual document
D. For any given piece p, the pairwise matching subproblem
asks for the neighbors of p, as well as their relative positions
and orientations with respect to p. Figure 2 shows an exam-
ple of a document reconstruction problem from the DARPA
Shredder Challenge, which we will use as a running example
and later in our experiments.

We assume the existence of visual cues on (some) pieces
that provide a human with some information about the con-
tent that is likely to be on a neighboring piece, and that
this information can be expressed via drawing. For exam-
ple, a person looking at pieces of a shredded document may
be able to recognize and complete letters that are only par-
tially present. We make no assumptions about the quality
of available features such as piece contours, which may be
non-discriminative for reconstructing shredded documents.

The Hallucination Method
The hallucination method aims to discover pairwise matches
by first having a human draw based on a given piece the con-
tent that is likely to be on a neighboring piece, and then us-
ing the drawing as a template that is matched against other
pieces to identify the best matches (neighboring pieces and
their relative positions). We can think of a piece as providing
a noisy signal of a local region of the puzzle that gives some
clues as to what piece might be next to it. Figure 1 shows
this process for finding a neighboring piece based on a hal-
lucination of the letter ‘T’ that is partially shown on the right
side of the displayed piece.4

To determine how good a piece is as a matching neighbor,
we fix the position of the template, and place the piece in po-
sitions at which the template and the piece overlap. For each
of these positions, we compute a score based on the similar-
ity of the template and the piece on the region of overlap. We
take the highest score across all positions for each piece as
that piece’s score. Potential matches include in them the rel-
ative positions at which the two pieces match, thus requiring
no further manual positioning whenever the highest scoring
position is the correct one.5

While the hallucination method is here described for per-
forming pairwise matches, we can also employ this tech-
nique when a user is shown more context (e.g., all the pieces
connected thus far), or for finding matches globally (e.g.,
where a user draws not only what the neighboring piece may
look like but what an entire region may look like). At a high
level, the core idea is to allow humans to express, via draw-
ings, the likely completions of the document when provided
with some portion of the document. These drawings then
serve as soft ‘visual constraints’ that the machine can use to
narrow down the solution space.

Application to the DARPA Shredder Challenge
We apply the hallucination method to the documents in the
DARPA Shredder Challenge, focusing here on Puzzle 1 (see
Figure 2). We describe below implementation details spe-
cific to this domain.

Preprocessing
We first segment the pieces from the image by extracting
them from the background. Since almost all of the shredded
pieces include lines (e.g., note the green line on the piece
in Figure 3), we can automatically align most of the pieces
using a simple Hough transform (Ballard 1987). For pieces
where this process fails, we manually align them by draw-
ing over the lines and recording these coordinates. The ori-
entations are therefore reduced to two (pieces can still be
flipped). To simplify our experiments, we further reduce the

4The interested reader can find a short video demonstrating
the hallucination method for the DARPA Shredder Challenge at
http://tinyurl.com/hallucinatevideo

5As described, our method assigns a single score to each piece
based on the best scoring position. Our underlying assumption is
that the best scoring position for a matching neighbor will typically
be (near) the actual position of the match. The method can be easily
modified to allow multiple matches for each piece.



Figure 3: Screenshot of the hallucination interface presented
to Mechanical Turk workers.

possible orientations to one (flipped or not flipped), by man-
ually scanning the pieces and determining the correct orien-
tation based on the text on each piece.

User Interface
Users are provided with a HTML5 canvas interface on which
to draw their hallucinations (see Figure 3). HTML5 can-
vas allows for simple pixel level manipulation, and makes
it easy to export drawings as image files that can be directly
passed on to our template matching algorithm or stored in a
database for later processing. In the current implementation
a user only hallucinates on the most distinguishing feature,
namely the black ink text.

Template Matching
We perform all of our template matching using binary im-
ages. For user drawings, the background is white and the
hallucinations are treated as black. For potential neighbors,
the ink in the image is black and all other pixels are treated
as white.

To measure the similarity between a user-specified tem-
plate and a corresponding patch of a potential neigh-
bor, we compute as the score their normalized cross-
correlation (Lewis 1995), which is a standard similarity met-
ric. For any given position of a potential neighbor, we let T
and M be 2-dimensional 0-1 arrays that respectively hold
the template and potential neighbor’s values in the region of
overlap. By subtracting the mean of values in T from each
element in T and similarly subtracting the mean of values in
M from each element in M, we derive the mean-normalized
matrices T̄ and M̄. The score for the position is the cosine
similarity between T̄ and M̄:

T̄ : M̄
|T̄||M̄|

where : denotes a double dot product6 and |A| is defined
as

√
A : A. A score of 1 indicates that the values for the

template and the potential neighbor in the region of overlap
are identical (a perfect match), while a value of -1 indicates
that they are complete opposites.

6A double dot product of two matrices A and B of the same
size is defined as the sum of component-wise multiplied elements,P

ij AijBij .

In general settings, the normalized cross-correlation can
be efficiently computed by performing calculations in
Fourier space (Lewis 1995). In our setting, we can directly
compute scores in the spatial domain because we are able to
drastically reduce the number of positions we search through
in the following ways. First, because a user’s template is
drawn relative to the original piece, we know where lines
should be (relative to the template), and need only compute
scores for positions where the lines on the original piece
and its potential neighbor align.7 Second, we only compute
scores for the first few or last few columns based on where
the user is drawing. For example, if the user’s drawing is on
the right hand side of the original piece, we need only con-
sider the first few columns of any potential neighbor. Com-
bining these two restrictions results in a small number of
positions to score for each potential neighbor, which allows
us to compute the normalized cross-correlation directly.

Experiments
To evaluate the effectiveness of the hallucination approach,
we conducted experiments using pieces from the puzzle
shown in Figure 2. There are a total of 227 pieces, which we
preprocessed in the manner described in the previous section
by first extracting them from the original image and then
aligning their orientation. We discarded pieces with very lit-
tle ink as these pieces cannot serve as pieces to match or as
potential neighbors.8 This left us with 109 pieces. To stream-
line our experiments, we focused on finding matches on the
right side of a piece, and only considered matching pieces
with right side neighbors in this set of 109 pieces. This left
us with 98 pieces for matching.

Metric
The goal of any pairwise matching technique is to signifi-
cantly reduce the amount of human time and effort required
to find matches. We assume that the output from a pairwise
matching method is an ordered list of pieces, and consider
as a metric the rank (or position) at which the first matching
neighbor occurs (lower is better). For pieces that have multi-
ple matching neighbors, we consider the lowest rank across
the possible neighbors. We take this rank as a proxy for the
amount of manual effort required for verification, with the
view that the fewer pieces that need to be verified before
finding a match, the better.9

Conditions
We considered three conditions. The first condition, hallu-
cination, considered the hallucination approach where we

7We search 2 pixels in each direction to account for any noise.
8We discarded pieces for which the text bounding box is smaller

than 20 pixels by 20 pixels.
9The matching methods we considered do provide position in-

formation, but we did not use this information for comparison. Our
assumption is that the highest scoring positions based on hallucina-
tions will tend to be the correct ones, and this was indeed the case
when we visually examined the best scoring positions of matching
neighbors in the hallucination condition.
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Figure 4: Average rank of the first matching neighbor un-
der the three conditions (lower is better). all indicates the
results when all 98 pieces are considered, and hallucinable
indicates the results when only the 76 hallucinable pieces
are considered. Bars (in black) show the standard error.

used user drawings as templates to score potential neigh-
bors. To obtain hallucination drawings, we posted tasks on
Amazon Mechanical Turk and obtained five hallucinations
for every piece considered (see interface in Figure 3). Work-
ers were instructed to draw on a HTML5 canvas what ink
is likely to be immediately to the right of the displayed
piece. To help workers learn how to perform the task, we
created a short tutorial containing illustrative examples and
true/false questions about the task’s instructions that work-
ers must successfully complete prior to drawing. In addition
to making sure that workers understood the instructions, the
tutorial aimed to teach workers that it is not always possible
to hallucinate entire letters (or at all) based on the displayed
piece, and that they should hallucinate as much as possible
but should not guess. In cases where no hallucination is pos-
sible (i.e., because there is too little ink or no ink crossing
the border), workers were asked to click the ‘Nothing I can
do here’ button. We recruited U.S. workers with a 98% or
higher approval rating, and paid them 25 cents for complet-
ing the tutorial and five cents for each drawing.

For a given piece and a user drawn template, we assigned
a score to each potential neighbor by computing the max-
imum normalized cross-correlation across all positions at
which the potential neighbor and template overlap. Sorting
the potential neighbors by this score resulted in an ordered
list of pieces for each user drawn template. To remove noise
and raise the ranking of pieces that were well-ranked in mul-
tiple hallucinations, we formed a final ordered list by ag-
gregating the individual template-based ordered lists using
a simple Borda count (Borda 1781), such that pieces with a
smaller sum of ranks appear at lower ranks in the final list.10

The second condition, machine, considered a completely
automated algorithm. We implemented a matching algo-
rithm that forms a template by extending the ink that is along

10For any piece where three or more workers selected ‘Nothing
I can do here,’ we applied the machine algorithm when there is ink
near the edge and assumed a randomly ordered list otherwise.
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Figure 5: Breakdown of the ranks of the first matching
neighbor for the hallucination and machine conditions when
only considering hallucinable pieces. The labels on the hor-
izontal axis gives the right end point of the rank bucket. For
instance, the bars corresponding to 5 provides the fraction of
pieces where the first matching neighbor was in rank 1–5.

the border of the piece being matched.11 The template was
then used in the same manner as user created templates in
the hallucination condition. This method aims to take ad-
vantage of the fact that ink text from cutoff characters tends
to continue along borders.

As a baseline, the third condition, random, considered a
randomly ordered list. This captures the case in which a hu-
man randomly scans through the pieces to look for a match.
Since a matching neighbor is equally likely to be in any po-
sition, the expected minimum rank of a matching neighbor
is k+1

# of neighbors +1 , where k is the number of pieces considered.

Results
Figure 4 shows the average rank of the first matching neigh-
bor for the three conditions. When considering all pieces,
the Wilcoxon test shows a difference (z = -1.42, p = 0.078)
between the rank of the first matching neighbor in the hal-
lucination condition (µ = 28.2) and the machine condition
(µ = 32.8), where hallucinations allow for a 14% saving
in the number of pieces that need to be reviewed before a
matching neighbor is found. When compared to the random
baseline (µ = 51.0), hallucinations allow for a 44% saving.

In some cases, there is little to no context at the bound-
aries based on which to hallucinate, i.e., there is no cutoff
character at the right border (see Figure 6(d)). When we con-
sidered only these hallucinable pieces where ink crosses the
right border (leaving 76 of the 98 pieces), we found an even
larger difference in the rank of the first matching neighbor
(see Figure 4), where the Wilcoxon test shows that the hal-
lucination condition (µ = 23.2) significantly outperforms
(z = -2.2, p = 0.014) the machine condition (µ = 31.8) by
27%, and the random condition (µ = 50.3) by 54%.

Figure 5 shows the distribution of the first matching
neighbor’s rank for the hallucination and machine condi-
tions for hallucinable pieces. We observe that hallucinations

11For each row we consider the 5 right-most pixels, and extend
the right-most ink by 5 pixels (if there is any).
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Figure 6: Example pieces and their hallucinations. In (a)–(c), the left-most piece is the piece that is being matched, and its
matching neighbor is placed to its right at the correct matching position. Next to these pieces are user-submitted drawings for
the piece being matched. Under each drawing is the rank of the first matching neighbor when using the drawing as a template.
‘aggregated’ indicates the rank of the first matching neighbor after rank aggregation is applied to the human drawings. ‘machine’
indicates the rank of the first matching neighbor when using the machine-generated template (not shown).

lead to matching neighbors with lower ranks much more fre-
quently, with the most significant difference occurring in po-
sition buckets 5 and 10, representing positions 1 through 10.

To better understand the scenarios under which hallucina-
tions are effective and ineffective, we examine how a piece’s
content and the workers’ drawings influence a matching
piece’s rank, and present in Figure 6 a number of illustrative
examples. In all of these examples, the left-most piece is the
piece being matched. In (a), we see that hallucination works
well as the human drawings correctly complete the letter ‘D’
in the piece being matched. In (b), hallucination performs
poorly because it is hard to determine the matching letter.
Following the task’s instructions to not guess, the subjects
were conservative and only provided a small amount of ink
in their drawings. In (c), based on the piece being matched,
the letter looks like it might be an ’O’ or a ’C.’ Most of the
workers’ hallucinations were conservative and would allow
matches to either letter, but the markings were nevertheless
rich enough to significantly decrease the search space, mak-
ing hallucination effective. In (d), the piece is not hallucin-
able as there is no text crossing the right border of the piece.
All subjects correctly marked this piece as non-hallucinable,
and did not provide drawings.

Discussion and Future Work
The hallucination method draws on the complementary
strengths of humans and machines to identify neighboring
pieces to reconstruct a document or an artifact. The method
can be generally applied to reconstruction tasks whenever
there exist visual cues from piece content that humans can
leverage effectively to visually describe potential matches
by drawing. Experiments on a document from the DARPA
Shredder Challenge show that the method is effective on a
large number of instances, and can provide significant sav-
ings in time and effort over humans or machines working in
isolation.

An area for future work is to identify matches more ro-
bustly when using hallucinations. One direction is to im-

prove the matching algorithm to better handle imprecision
in human drawings, and to account for similarities and dif-
ferences in hallucinations when aggregating results. Another
direction is to obtain better inputs, by using observations
of human visual biases and other failure cases to improve
instructions, train workers, and more finely identify ‘hallu-
cinable’ pieces. From our experience, training workers to
not over-hallucinate seems to improve results, but we also
observe cases in which workers could have provided bet-
ter hallucinations had they drawn more. Future work should
continue to help workers learn how best to contribute; one
interesting direction is to provide workers with direct feed-
back for hallucinations by displaying potential matches in
real time.

While the specific template matching approach we im-
plemented for puzzles in the DARPA Shredder Challenge
is rather simple, template matching remains tractable even
in more complex scenarios where the template may need to
be rotated or scaled, and when matches occur over a dense
set of points (Barnes et al. 2009; 2010; Korman and Avidan
2011). This suggests that the hallucination method remains
useful and tractable in settings with more complex pieces
(e.g., in 3-dimensions or with far more detail per piece) and
for more expressive hallucinations (e.g., where hallucina-
tions may describe possible combinations of patterns and
colors).

The hallucination method is meant to be integrated as
part of a larger human-machine system for document recon-
struction, where numerous interesting questions and chal-
lenges arise for effectively and efficiently combining hu-
man and machine intelligence. In the local context of pair-
wise matching, one can imagine maintaining probabilistic
models over the likelihood of particular matches, and us-
ing such information to determine whether more halluci-
nation or human verification is required when optimizing
the use of human effort (Dai, Mausam, and Weld 2010;
Kamar, Hacker, and Horvitz 2012). In the global context,
there are also opportunities to apply decision-theoretic rea-



soning to determine where human efforts are most needed,
and to direct efforts toward making progress where it is most
crucial, e.g., to obtain useful context that helps for recon-
structing the rest of the document, or to prioritize the recon-
struction of particular parts of the document.

Beyond pairwise matches, we believe our hallucination
approach can be effectively applied at different levels of
granularity through the course of a document reconstruc-
tion effort. In this direction, we are interested in exploring
interactions for global hallucinations (e.g., ‘this part looks
like a building of sorts’) and more generally discovering ef-
fective interfaces for supporting the expression of people’s
intuitions and knowledge from context.

Acknowledgments
We thank Zak Stone, David Parkes, Eric Horvitz, Rob
Miller, Hanspeter Pfister and members of the user interface
design group at MIT for helpful discussions. Haoqi Zhang
and John Lai are generously funded by a NSF Graduate Re-
search Fellowship and NDSEG Fellowship respectively.

References
Ballard, D. H. 1987. Generalizing the hough transform to
detect arbitrary shapes. In Fischler, M. A., and Firschein, O.,
eds., Readings in computer vision: issues, problems, prin-
ciples, and paradigms. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc. 714–725.
Barnes, C.; Shechtman, E.; Finkelstein, A.; and Goldman,
D. B. 2009. PatchMatch: A randomized correspondence
algorithm for structural image editing. ACM Transactions
on Graphics (Proc. SIGGRAPH) 28(3).
Barnes, C.; Shechtman, E.; Goldman, D. B.; and Finkelstein,
A. 2010. The generalized PatchMatch correspondence al-
gorithm. In European Conference on Computer Vision.
Borda, J. C. 1781. Memoire sur les elections au scrutin.
Histoire de l’Academie Royale des Science.
Branson, S.; Wah, C.; Schroff, F.; Babenko, B.; Welinder, P.;
Perona, P.; and Belongie, S. 2010. Visual recognition with
humans in the loop. In Proceedings of the 11th European
conference on Computer vision: Part IV, ECCV’10, 438–
451. Berlin, Heidelberg: Springer-Verlag.
Brunelli, R. 2009. Template Matching Techniques in Com-
puter Vision: Theory and Practice. John Wiley & Sons.
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