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Introduction
Ridges are local maxima in a relaxed sense. According to Eberly, Height Ridges are the loci 
with first derivative equal to zero and second derivative negative, in at least one direction 
(which is per definition perpendicular to the ridge). Widely used in image analysis, e.g. in 
medical imaging, there needs to be only one such direction with the mentioned condi-
tions, resulting in ridge curves. In the 3D domain, one usually chooses in advance if it is 
looked for ridge surfaces (mentioned conditions in one direction) or ridge curves (men-
tioned conditions in two orthogonal directions). This decision is easily made if one knows 
that the data contains only structures with circular cross-section (looking for ridge 
curves) or longish cross-section (looking for ridge surfaces). However, data is often un-
known, exhibits structures that are intermediate, or exhibits both types. The goal of this 
project is to develop a method that is capable of deciding automatically (with possible 
parametrization by the user) which type has to be looked for at a given region.

Task / Work Packages
�• Automatic decision based on eigenvalues of the Hessian, generation of the geometry
�• Application of the method to synthetic test data and practical data
�• Hysteresis-like mechanisms for avoiding ridges to oscillate between 1D and 2D
�• Other (advanced) mechanisms for extraction control and filtering
�• Possibly comparison of the results to those from Skeletonization/Medial Axis

Requirements
�• C/C++ programming skills
�• Sufficient mathematical skills

Remarks
A written report and an oral presentation conclude the work. The thesis is overseen by 
Prof. Markus Gross and supervised by Filip Sadlo, Institute of Computational Science. For 
further information or application to this project, please contact Filip Sadlo, IFW C27.1, 
Tel. 632 71 44, sadlo@inf.ethz.ch.



Abstract

In this thesis, a novel representation and technique for simulating static non-linear material be-
havior based on Finite Elements (FE) is presented. All required simulation parameters can be
acquired and fitted from a set of example deformations of a real-word object or subject. The
simulation is therefore closely related to the person or object specific deformation behavior.
We first acquire a single static surface scan and several measurements of static surface dis-
placements by probing an object at many positions and orientations using a force sensor. A
trinocular stereo system measures the surface displacements at colored marker locations on the
object. The volume of the object is discretized into tetrahedral elements, and for each element
and every measurement material parameters are fitted. Our material model consists of material
parameters and the corresponding material strain. During run time, we blend these parameters
by using a novel strain-based interpolation scheme in material strain space, modeling therefore
intuitively the non-linear material stress-strain relationship. Furthermore, since the model is
based on a linear deformation FEM simulations of new interactions are stable and also compu-
tationally efficient.

i



ii



Acknowledgment

I would like to thank all people who have helped and inspired me during my master thesis.

I especially want to thank my advisor, Bernd Bickel, for all the fruitful discussions and all the
patience he had with me. I also wish to express my warm thanks to my supervisors, Professor
Markus Gross (ETH Zurich), and Professor Hanspeter Pfister (Harvard University), for their
valuable advice and friendly help. Professor Miguel A. Otaduy (URJC Madrid) and Doctor
Wojciech Matusik (Adobe Research) also deserve a special thanks as collaborators on this work.

My deepest gratitude goes to my extended family and friends.

Lastly, and most importantly, I wish to thank my parents, Esther and Martin Bächer for all their
love and support.

iii



iv



Contents

List of Figures vii

List of Tables ix

1 Introduction 1

2 Related Work 3

3 Direct Analysis of Contact Interaction 5
3.1 Linear Analysis of Solid Continua . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.2 Strain-Displacement Relation . . . . . . . . . . . . . . . . . . . . . . 7
3.1.3 Stress-Strain Relation . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.4 Equilibrium Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.5 Finite Element Approximation of Fields . . . . . . . . . . . . . . . . . 9
3.1.6 Discrete Equilibrium Equation . . . . . . . . . . . . . . . . . . . . . . 10
3.1.7 Geometric Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.8 Matrix Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Warped Stiffnesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.1 One-Layer Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.2 Element-Based Warped Stiffnesses . . . . . . . . . . . . . . . . . . . 16
3.3.3 Rotation Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 A More Flexible FEM Approximation . . . . . . . . . . . . . . . . . . . . . . 18
3.4.1 Element-Wise Linear Stress-Strain Relation . . . . . . . . . . . . . . . 18
3.4.2 Isotropic Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

v



Contents

3.4.3 Stiffness Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Measuring Contact Interactions 21
4.1 Acquisition System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Processing Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 A Notation for Measured Contact Interactions . . . . . . . . . . . . . . . . . . 24

5 Inverse Analysis of Contact Interactions 27
5.1 Linear and Non-linear Inverse Problems . . . . . . . . . . . . . . . . . . . . . 28
5.2 Force-Based Inverse Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.1 Inverse Analysis of an Individual Contact Interaction . . . . . . . . . . 30
5.2.2 Simultaneous Analysis of Multiple Interactions . . . . . . . . . . . . . 34

5.3 Displacement-Based Inverse Analysis . . . . . . . . . . . . . . . . . . . . . . 39
5.3.1 Inverse Analysis of an Individual Contact Interaction . . . . . . . . . . 39
5.3.2 Simultaneous Analysis of Multiple Interactions . . . . . . . . . . . . . 42

6 Synthesis of New Interactions 45
6.1 Incremental Loading and Stiffness Warping . . . . . . . . . . . . . . . . . . . 46
6.2 Simulation of Deformations Using Various Material Models . . . . . . . . . . 47

6.2.1 Linear Homogeneous Isotropic Material . . . . . . . . . . . . . . . . . 48
6.2.2 Linear Inhomogeneous Material . . . . . . . . . . . . . . . . . . . . . 48
6.2.3 Non-Linear Homogeneous Isotropic Material . . . . . . . . . . . . . . 48
6.2.4 Non-Linear Inhomogeneous Material . . . . . . . . . . . . . . . . . . 50

7 Model Validation 53
7.1 Fitting a Homogeneous Material Behavior . . . . . . . . . . . . . . . . . . . . 53
7.2 Fitting a Inhomogeneous Material Behavior . . . . . . . . . . . . . . . . . . . 54

8 Conclusion and Outlook 59

List of Symbols 61

Bibliography 61

vi



List of Figures

3.1 Deformable Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Matrix Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Stiffness Warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Trinocular Stereo Vision System . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Painting a Sponge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Contact Probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Force Sensor Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5 Set of Example Deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1 Regularization Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Spatial Smoothness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 Smoothness Over Measurements . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1 Incremental Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.1 Four Example Deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.2 Linear Homogeneous Isotropic Material . . . . . . . . . . . . . . . . . . . . . 55
7.3 Linear Inhomogeneous Material . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.4 Non-linear Inhomogeneous Material Behavior (E) . . . . . . . . . . . . . . . . 57
7.5 Non-linear Inhomogeneous Material Behavior (ν) . . . . . . . . . . . . . . . . 58

vii



List of Figures

viii



List of Tables

7.1 Fitting Individual Homogeneous Isotropic Parameters . . . . . . . . . . . . . . 54
7.2 Linear Homogeneous Isotropic Material . . . . . . . . . . . . . . . . . . . . . 55
7.3 Non-Linear Homogeneous Isotropic Material . . . . . . . . . . . . . . . . . . 57

ix



List of Tables

x



1
Introduction

Creating visually accurate models of real-world objects is a fundamental problem in computer
graphics. Since most objects in our physical world are not rigid, it is not sufficient to simply
capture their static geometry and appearance. We also need to measure how an object deforms
upon contact and incorporate this contact interaction behavior in its model.

Finding a general model of deformable objects that allows physically-plausible simulation in
space and time is very challenging. Potential applications require such a model to cover con-
flicting demands: For a special effect animator, for example, a physically-accurate interaction
behavior is essential when animating a natural phenomena. On the other hand, feedback has to
be fast enough to be useful in his work flow. In virtual realities, this interactivity requirement is
even more crucial while realistic rendering is still of high importance.

Most deformable models in computer graphics are solving a so-called direct problem. That is,
the deformation response of an object given a specific contact is determined by assuming that a
set of model parameters is known. The model parameters often have to be adjusted by hand and
the resulting simulated deformation behavior approximates real-world behavior rather poorly.
The fundamental observation on which our approach is based on is that accurate direct analysis
can only be made when inverse analysis has been solved to determine the requisites, such as
model parameters, for the direct problem.

To increase realism in simulations of deformable objects, models based on continuum mechan-
ics have been extensively used in the graphics community. The field of continuum mechanics
provides a comprehensive theoretical framework for the analysis of the mechanical behavior
of materials and therefore leads to more accurate deformable models. Within this theory, de-
formable objects are modeled as so-called solid continua. That is, the matter of an object is as-
sumed to be continuously distributed over the region of the space it occupies. This assumption
allows to describe the mechanical behavior of an object by a set of Partial Differential Equations
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1 Introduction

(PDE’s). These PDE’s are of two main kinds: Firstly, there are equations such as conservation
laws which apply equally to all materials. Secondly, there are equations - known as constitutive
equations - which describe the mechanical behavior of particular materials. By discretizing the
involved equations using, for instance, Finite Elements (FE’s) a specific mechanical behavior
can be simulated on a computer.

The PDE’s of a general deformable object are non-linear and a discretization of the governing
equations using the Finite Element Method (FEM) yields a set of non-linear algebraic equations.
Solving such a non-linear system of equation is computationally very costly and can also be
numerically unstable. The governing PDE’s are therefore often linearized. This linearization
leads to a linear system of equations whose solution is fast to compute and also numerically
stable. However, it also entails significant linearization artifacts during a simulation.

Our approach fills the gap between a computationally efficient linear and a physically-accurate
non-linear FEM approach by incorporating measured deformation behavior into a FEM-based
deformation model. We first refine a linear FEM model while keeping it computationally ef-
ficient. To this end, we increase the number of model or more precisely material parameters
and also integrate a warped stiffness approach [Müller et al. 2002, Müller and Gross 2004]. By
substituting measured contact interactions into the governing finite equations and by inversely
using them we are able to formulate an inverse problem from which the unknown material
parameters can be obtained. During simulations of new contact interactions the fitted FEM-
approximations are blended together by interpolating between estimated parameters in param-
eter space.

The thesis is organized as follows. In Chapter 2 connections to related work are discussed. We
then start with a direct analysis of a general contact interaction (Chapter 3). In Chapter 4 we
discuss the acquisition of contact measurements which are then used in the subsequent Chapter
5 to formulate our inverse problem. The simulation of new interactions is discussed in Chapter
6. It follows a Chapter in which the model is validated (Chapter 7). In Chapter 8 conclusions
are drawn and future work is discussed.
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2
Related Work

Since Terzopoulos et al.’s paper about elastically deformable models [Terzopoulos et al. 1987],
physically-based deformation models have been an active research area in computer graphics.
A wide range of models were proposed and the interested reader is referred to two survey
papers [Gibson and Mirtich 1997, Nealen et al. 2005]. In this thesis the discussion of related
work focuses on mesh-based methods only:

Mass-Spring Systems. Among mesh based methods, the most simple, and hence most popular
deformable model is a mass-spring system. The model is discrete in nature and not derived from
a set of partial differential equations. The technique allows to model static and dynamic defor-
mations and has even been extended to model non-linear behavior [Yu et al. 2001]. However, its
parameterization based on spring constants is not directly related to the constitutive equations of
a specific object. Fitting and validation of parameters is therefore difficult [Bianchi et al. 2004].
Furthermore, a large number of nodes is needed to compensate for the model’s inaccuracies
which in turn increases the model’s computational cost.

Models Based on Finite Differences. The Finite Difference Method (FDM) provides an easy
way of discretizing PDE’s and was, for instance, used by Terzopoulos et al. to discretize their
deformation model [Terzopoulos et al. 1987]. The assumption of a regular mesh, however,
makes it difficult to approximate an object’s boundary.

Models Based on Boundary Elements. A deformation model based on boundary integrals
and the Boundary Element Method (BEM) was first used in graphics by [James and Pai 1999].
Given that our measurements are only capturing the interaction behavior on an object’s bound-
ary, a BEM formulation would simplify our parameter fitting notably. But the class of materials
the method can handle is restricted to those with homogeneous properties. Extending such a
model to include more complex behavior is not straight-forward.
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2 Related Work

Models Based on Finite Elements. The finite element method, even though more complex,
provides more flexibility. It was successfully and extensively used by material scientists to
model linear and non-linear continua. Excellent introductions to linear and non-linear FEM-
based deformation models are given in [Bathe 1995, Bonet and Wood 2008].

Our approach is based on the warped stiffness approach described in [Müller and Gross 2004].
Stiffness warping helps to remove the artifacts that linear FEM models show if large rotational
deformations are applied. Linear FEM models assume a linearized Green strain which is not
rotation-invariant. This assumption may lead to ghost forces during a simulation, which in turn
can cause unrealistic growth in volume. The ghost forces can be avoided by computing the
element forces in unrotated frames before rotating them back to the frames of the deformed
elements. In contrast to [Müller and Gross 2004], we employ stiffness warping in a static FEM
model.

Inverse Problems and the Theory of Regularization. The determination of material param-
eters from observed deformation responses involves solving an inverse problem. Inverse prob-
lems, in contrast to direct problems, are often ill-posed. The theory of regularization provides
powerful techniques to solve such problems by adding smoothness constraints. An overview
over those techniques for linear and non-linear inverse problems is given in [Hansen 2007] and
[Engl and Kügler 2003], respectively.

Blending Techniques. We use a technique similar to the weighted pose-space deformation
(WPSD) scheme of [Bickel et al. 2008] to interpolate between the estimated material parame-
ters in parameter space. This RBF-based interpolation technique (RBF stands for Radial Basis
Function [Carr et al. 2001]) allows us to blend between fitted FEM approximations during sim-
ulations of new contact interactions. As arguments to the RBF’s, a novel weighted strain-based
distance metric is used.

Scanning Physical Interaction Behavior. Most related to the work presented here is the work
by Pai et al. [Pai et al. 2001] about scanning the physical interaction behavior of objects. They
built a highly automated robotic measurement facility to measure the physical interaction be-
havior of objects. In contrast to our work, their model is only able to capture the linear behavior
of an object.
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3
Direct Analysis of Contact Interaction

In this chapter we analyze an individual contact interaction with a solid object as a direct
problem. For a direct problem to be posed, several requisites have to be met. In our case
the knowledge of the following items are required:

• Region of space the deformable object occupies.

• Governing equations that describe the deformation behavior in the interior of the object.

• Prescribed displacements and applied forces which act as constraints on the object’s sur-
face.

• The object’s material properties.

When all of these requisites are satisfied, the deformation response of a specific contact inter-
action can be computed by using a discretization scheme, such as the finite element method.

We start with a linear analysis of the mechanics of a general contact interaction and assume
the object’s material properties to be homogenous and isotropic. That is, the material properties
are assumed to be the same throughout the object’s body and also independent of direction.
However, the assumption of translational and rotational invariant material properties does not
hold for general deformable objects. We therefore refine the parameterization of the linear
formulation so that inhomogeneous and pseudo-anisotropic material behavior can be efficiently
approximated.

This refinement of material parameters does not avoid all of the linearization artifacts. The
linearization of material-independent or so-called non-constitutive equations may also lead to
significant artifacts especially in case of large rotational deformations. We therefore employ
warped stiffnesses [Müller et al. 2002, Müller and Gross 2004] in our model which provide a
robust and effective way to avoid those non-constitutive artifacts.
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3 Direct Analysis of Contact Interaction

3.1 Linear Analysis of Solid Continua

Before we start with the linear analysis of a deformable object we first restate our direct problem
on a more abstract level. Thereafter, the two major physical quantities, namely the strain and
stress tensors, are introduced. Those quantities are then used to derive the governing equations
within the object’s body. The governing equations, in turn, allow us to describe the unknown
deformation response as a minimum of an equilibrium equation. By using a finite element
discretization of the involved physical quantities the deformation response can be found by
solving a simple linear system of finite equations.

3.1.1 Problem Statement

A general deformable object in its rest and deformed state is illustrated in Figure 3.1.

Ω

∂Ω

∂Ωu

x

x + u(x)∂Ωf

Figure 3.1: A general deformable object in its rest and deformed state. Geometric constraints are painted

green and force constraints are painted blue.

As mentioned above, the deformation response of a deformable object on a specific contact
can only be computed if a set of requisites is known. We repeat those requisites and state our
problem in more mathematical terms here:

The following four requisites have to be met so that direct analysis can be applied to calculate
the response of a deformable object upon a contact:

• The domain Ω and boundary ∂Ω of the deformable object in its rest state.

• The governing PDE’s in the domain Ω.
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3.1 Linear Analysis of Solid Continua

• The two kinds of boundary conditions: Geometric constraints and force constraints.

• The material parameters involved in the governing PDE’s.

We have two kinds of boundary conditions in our problem. On one hand, we assume that
parts of the object’s boundary is fixed. We denote those parts as ∂Ωu and call those kinds of
conditions geometric constraints. More interestingly are the parts of the surface where we apply
our contact forces. These parts are denoted as ∂Ωf and the corresponding conditions are called
force constraints.

We observe that a specific deformation response can be described as a displacement field

u(x, y, z) =





u(x, y, z)

v(x, y, z)

w(x, y, z)




(3.1)

that relates every point x ∈ Ω of the body in its rest state to the corresponding point x + u(x)
in its deformed state.

Our goal is therefore to find this displacement field u(x).

3.1.2 Strain-Displacement Relation

In the next two Subsections, we introduce the two major physical quantities that describe the
deformation behavior in the interior of an object. The resulting two equations, namely the
strain-displacement and the strain-stress relation, describe the non-constitutive and constitutive
behavior of a specific object. We start our discussion by introducing the so-called strain tensor:

Strain tensors provide a powerful mathematical tool to describe local deformations in the inte-
rior of an object. Two typical choices are given by the non-linear Green strain and its linearized
version, the Cauchy strain. We employ the linear Cauchy strain in our work which is defined
as:

ε(u) =
1

2

�
∇u + (∇u)T

�
(3.2)

By using a linearized version of the Green strain we loose its rotational-invariance property.
This, in turn, leads to significant linearization artifacts in case of large rotational deformations.
However, as mentioned before, those artifacts can effectively be eliminated by using a warped
stiffness approach [Müller and Gross 2004]. We will get back to that in Section 3.3.

The Cauchy strain is symmetric. This symmetry property can be used to rewrite the 3×3 tensor

7



3 Direct Analysis of Contact Interaction

as a 6× 1 vector:

ε(u) =





ux uy + vx uz + wx

vx + uy vy vz + wy

wx + uz wy + vz wz




−→ ε(u) =





ux

vy

wz

vx + uy

wy + vz

wx + uz





(3.3)

By introducing a linear differential operator D, we can finally write the Cauchy strain as a linear
strain-displacement relation:

ε(u) = Du (3.4)
with

D =





∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

∂
∂y

∂
∂x 0

0 ∂
∂z

∂
∂y

∂
∂z 0 ∂

∂x





(3.5)

3.1.3 Stress-Strain Relation

Strain leads to internal forces which are represented by a so-called stress tensor σ. We observe
that the symmetry property also holds for the 3× 3 stress tensor. The stress-strain relation can
therefore be written as

σ(u) = Eε(u) (3.6)
if a homogenous linear material is assumed. This relation is also known as Hooke’s law of
elasticity. The 6×6 matrix E is material dependent and allows us to simulated different material
behavior by changing its entries. The above relation belongs therefore to the class of constitutive
equations.

The assumption of a linear strain-stress relation is only valid for linear materials or, in case of
non-linear materials, only if sufficiently small deformations are applied. A major contribution
of our work is that non-linear stress-strain relations can be approximated by fitting and blending
individual linear FEM-approximations.

3.1.4 Equilibrium Equation

The solution to our problem is the displacement field that describes the deformed object in its
condition of equilibrium. We therefore recast our constrained problem in terms of an equilib-

8



3.1 Linear Analysis of Solid Continua

rium equation. To this end, we first have to define the internal and external energies inherent in
the problem:

The total internal energy of a deformable object is defined as:

I(u) =
1

2

�

Ω

ε(u)T σ(u)dx (3.7)

In our case, the only source of external energy is given by the constraints on the object’s bound-
ary. For simplicity, we only discuss the effect of force constraints here and postpone the discus-
sion of geometric constraints to Subsection 3.1.7.

The external energy, or more precisely the external work, that is added to the body through the
force constraints in the contact areas ∂Ωf is given by:

W (u) =

�

∂Ωf

fTudx (3.8)

where f(x) is the force field defined at every point x ∈ ∂Ωf .

The equilibrium equation of our problem is thus

E(u) = I(u)−W (u) =
1

2

�

Ω

ε(u)T σ(u)dx−
�

∂Ωf

fTudx (3.9)

and the displacement field u that minimizes E(u) is the deformation we are looking for.

3.1.5 Finite Element Approximation of Fields

So far, we described the continuum behavior of an object at an infinity of points. The next step
is to discretize this behavior in terms of a finite number of points called nodes. To this end, the
object is partitioned into a set of finite elements e. The partition we use in our work is based on
tetrahedral elements.

This discretization of space allows us to approximate the displacement field u(x) within a spe-
cific element e by interpolating the nodal displacements ue

i (displacement at node xe
i ) by using

a set of basis functions φe
i (x):

u(x)|e ≈
4�

i=1

ue
iφ

e
i (x) (3.10)

We employ linear basis functions in our finite element approximation. The coefficients of the
basis function

φe
i (x, y, z) = ae

ix + be
iy + ce

iz + de
i (3.11)

corresponding to node i of element e can be found by solving the equation system:

φe
i (x

e
j) = δij, j = 1, . . . , 4 (3.12)

where δij denotes the Kronecker delta.

9



3 Direct Analysis of Contact Interaction

By introducing a 3× 12 matrix

He(x) = [He
1(x)He

2(x)He
3(x)He

4(x)] (3.13)

with elements
He

i (x) = diag(φe
i (x), φe

i (x), φe
i (x)) (3.14)

and collecting all nodal displacements ue
i in a 12× 1 vector ue, the approximated displacement

field within an element e can be written as a matrix-vector multiplication:

u(x)|e ≈ He(x)ue (3.15)

The discretized displacement field, in turn, allows us to derive discrete versions of element
strains and element stresses:

The discretized strain within an element e is

ε(x)|e ≈ εe(x) = DHe(x)ue (3.16)

If we now apply the differential operator D to the matrix He, we get a constant 6 × 12 matrix
Be. The discrete strain is therefore assumed to be constant within an element and is given by:

ε(x)|e ≈ Beue (3.17)

The discrete stress tensor within an element e is simply

σ(x)|e ≈ Eεe (3.18)

if a homogenous and linear material is assumed.

Both, the discretized stress and strain tensor fields are thus assumed to be element-wise constant.

3.1.6 Discrete Equilibrium Equation

With the discrete versions of the displacement and the two tensor fields we can finally derive a
discrete version of our equilibrium equation.

Let us first start with the discretization of the internal energy. As we saw in Subsection 3.1.4
Equation 3.7, the total internal energy of a deformable body is defined as:

I(u) =
1

2

�

Ω

ε(u)T σ(u)dx. (3.19)

A discretized version of the internal energy can be derived by simply replacing the global strain
and stress tensor fields by their element-wise constant approximations:

I(u) ≈ 1

2

�

e

�

Ve

εT
e Eεe =

1

2

�

e

uT
e

��

Ve

BT
e EBe

�
ue (3.20)
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3.1 Linear Analysis of Solid Continua

The integral in brackets is the so-called stiffness matrix of element e, denoted as Ke. Because
of the constancy of both, the element strains and element stresss, the integral over the element’s
volume Ve simplifies to a multiplication by Ve:

Ke =

�

Ve

BT
e EBe = VeB

T
e EBe (3.21)

The discrete internal energy can therefore be written as a closed form:

I(u) ≈ 1

2

�

e

uT
e Keue =

1

2
uTKu (3.22)

The matrix K is the so-called global stiffness matrix and has 3n × 3n elements if n denotes
the number of nodes. Its assembly from element stiffnesses will be discussed in Subsection
3.1.8. All the nodal displacements are collected in the 3n × 1 vector u. Note that we used the
same notation for the displacement field and its discrete counterpart here. In the following, u is
exclusively used for discrete displacement field if not mentioned otherwise.

Next, we will discretize the external energy. According to Equation 3.8, the external work is
defined as:

W (u) =

�

∂Ωf

fTudx (3.23)

The discretized force field is only defined for nodes part of the surface area ∂Ωf . To simplify
our notation, we assume that forces are defined at all nodes of the discretization and that they are
only non-zero if the corresponding node is part of ∂Ωf . This allows us to write the discretized
external energy as:

W (u) ≈
n�

j=1

fT
j uj = fTu (3.24)

where the sum is over all nodes and the f and u denote the two 3n× 1 vectors which collect the
nodal forces and displacements.

The discrete equilibrium equation can therefore be written as a quadratic form:

E(u) ≈ 1

2
uTKu− fTu (3.25)

The displacement vector that minimizes this discretized energy equation can be found by setting
the gradient with respect to u of the above expression to zero (note that the global stiffness
matrix is symmetric):

∇u

�
1

2
uTKu− fTu

�
= Ku− f = o (3.26)

The displacement can therefore be found by solving a linear system of finite equations:

Ku = f (3.27)
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3 Direct Analysis of Contact Interaction

3.1.7 Geometric Constraints

In the above derivation, we only discussed the effect of force constraints. Let us now take a
closer look at the effect of geometric constraints.

Without loss of generality (renumbering of nodes), the equation system

Ku = f (3.28)

can be reformulated as:



K∂Ωf ,∂Ωf
K∂Ωf ,Ω K∂Ωf ,∂Ωu

KΩ,∂Ωf
KΩ,Ω K∂Ω,∂Ωu

K∂Ωu,∂Ωf
K∂Ωu,Ω K∂Ωu,∂Ωu









u∂Ωf

uΩ

u∂Ωu




=





f∂Ωf

fΩ

f∂Ωu




(3.29)

The subscripts are self-explanatory. u∂Ωf
, for instance, is the vector which collects all the

displacements of nodes that are part of ∂Ωf . For simplicity, we use Ω instead of Ω\(∂Ωu∪∂Ωf )
to describe the set of all nodes except those part of ∂Ωu or ∂Ωf . According to our problem
statement (geometric constraints), the nodes on the discretized surface area ∂Ωu are assumed
to be fixed. In other words, u∂Ωu is assumed to be equal to the zero vector. Furthermore, we
assumed that nodal forces are only non-zero for nodes part of ∂Ωf . Hence, f∂Ωu and f∂Ω are
equal to the zero vector as well.

The system therefore reduces to:


 K∂Ωf ,∂Ωf
K∂Ωf ,Ω

KΩ,∂Ωf
KΩ,Ω







 u∂Ωf

uΩ



 =



 f∂Ωf

o



 (3.30)

3.1.8 Matrix Assembly

The global stiffness matrix K, as defined in Equation 3.22, has to be assembled from the indi-
vidual element stiffnesses Ke. To this end, the 12×12 stiffnesses Ke are first split into 16 block
matrices. Those 3 × 3 blocks are then added to the corresponding blocks in the global matrix
K as illustrated in Figure 3.2.

For simplicity of notation, a sigma sign is used to abbreviate this special assembly procedure:

K =
�

e

Ke (3.31)

In the following summations over elements (
�

e) indicate that a global matrix has to be assem-
bled from12× 12 element matrices.

3.2 Material Properties

In the last Section, we assumed a globally constant material matrix E. That is, we assumed the
material properties to be homogenous throughout the object’s body. E itself has still 36 degrees
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3.2 Material Properties

i
j

k

l

i

i

j

j k l

k

l

K
Ke

e

Figure 3.2: Matrix assembly: i, j, k, l denote the global indices of the nodes of element e.

of freedom which allow us to have properties that vary across global directions. In this Section,
we will introduce homogenous materials that exhibit the same material properties across all
global directions, so-called isotropic materials. This isotropy assumption allows to reduce the
number of global variables to a set of two independent elastic constants. These two constants
are usually expressed as Young’s modulus E and Poisson ratio ν and our material matrix E can
be written as:

E =
E

(1 + ν)(1− 2ν)
(F + νG) (3.32)

with the two constant matrices

F =





1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0.5 0 0

0 0 0 0 0.5 0

0 0 0 0 0 0.5





(3.33)
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3 Direct Analysis of Contact Interaction

and

G =





−1 1 1 0 0 0

1 −1 1 0 0 0

1 1 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1





(3.34)

Let us briefly discuss the meanings of these two elastic constants:

Poisson ratio The Poisson ratio is unit-less and describes the compressibility of a material.
The range of physically-plausible values is −1 < ν < 0.5. Negative Poisson ratios are rare.
Materials with a negative Poisson ratio become thicker in one direction if they are stretched in
perpendicular directions. Hence, most materials have a Poisson ratio between 0.0 and 0.5. A
Poisson ratio of nearly 0.5 means the material is almost incompressible.

Young’s Modulus The Young’s modulus of a material is usually given in Giga Pascal (GPa =
109 N

m2 and is always positive. To ease the discussion of fitted parameters in Chapter 7, the
conversion factor between table values (in GPa) and our parameter values (which are given in
N

cm2 because displacements are measured in cm) is calculated here:

1GPa = 109 N

m2
= 109 N

(100cm)2
= 105 N

cm2
(3.35)

We therefore have to multiply table values by a factor of 105 to compare them with our fitted
Young’s moduli.

A parameterization of homogeneous isotropic materials based on the Poisson ratio and the
Young’s modulus is more intuitive then others. However, we employ an alternative parame-
terization in our work which allows us to write the matrix E as a linear combination of the two
constant matrices F and G [Becker and Teschner 2007]:

By introducing the two parameters

λ =
E

(1 + ν)(1− 2ν)
(3.36)

and
α = λν (3.37)

Equation 3.32 can be written as
E = λF + αG (3.38)

The parameter α is also known as Lamé’s constant in elasticity theory whereas λ is not directly
related to any elasticity constant.

As we will see in Chapter 5, this parameterization has several advantages: It will allow us to
formulate the parameter fitting as a linear system of equations. Furthermore, potential numerical
problems caused by Poisson ratios near the singularities −1 or 0.5 are avoided.
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3.3 Warped Stiffnesses

We conclude this section by summarizing the conversion formulas for the two pairs of isotropic
constants:

The conversions from (λ, α) to (ν, E) are

ν =
α

λ
(3.39)

and
E = λ(1 + ν)(1− 2ν) (3.40)

And the inverse conversions are

λ =
E

(1 + ν)(1− 2ν)
(3.41)

and
α = νλ (3.42)

3.3 Warped Stiffnesses

As mentioned before, the linear Cauchy strain, as defined in Equation 3.2, is not rotational-
invariant. This may lead to significant linearization artifacts in case of large rotational deforma-
tions. Those artifacts can effectively be avoided by using warped stiffnesses [Müller et al. 2002,
Müller and Gross 2004]. The basic idea is to compute the elastic forces that act at the nodes of
an element in an unrotated frame before rotating them back to the frame of the deformed ele-
ment. To this end, rotation matrices between deformed and undeformed element frames have to
be computed. However, those can only be calculated if the three-dimensional coordinates of all
of the involved nodes are known. The problem is now that it is extremely difficult to measure
the displacements of nodes in the interior of an object. We therefore assume a one-layer ma-
terial where we only have nodes on the object’s surface. We will discuss these simplifications
in Subsection 3.3.1. Thereafter, the warped stiffness approach will be discussed in more detail.
We conclude this Section with a derivation of a new set of algebraic equations for our specific
problem.

3.3.1 One-Layer Material

In Subsection 3.1.7, we derived the following reduce equation system:


 K∂Ωf ,∂Ωf
K∂Ωf ,Ω

KΩ,∂Ωf
KΩ,Ω







 u∂Ωf

uΩ



 =



 f∂Ωf

o



 (3.43)

If we assume a one-layer material, we do not have nodes in the body’s interior (Ω \ ∂Ω) and the
above equation system can be further reduced to:

K∂Ωf ,∂Ωf
u∂Ωf

= f∂Ωf
(3.44)

In the following Ku = f stands for this reduces equation system if not mentioned otherwise.
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3 Direct Analysis of Contact Interaction

3.3.2 Element-Based Warped Stiffnesses

The global displacement vector u in the equation system Ku = f can be expressed as the
difference of the global vector of nodal absolute positions, denoted as x, and the global vector
of initial nodal positions, denoted as x0. Our equation system can therefore be written as:

K (x− x0) = f (3.45)

If we zoom in to one element e, this equation translates to:

Ke (xe − x0e) = fe (3.46)

where Ke now denotes the element stiffness, xe and x0e the 12×1 vectors of absolute and initial
node positions and fe the 12× 1 vector that collects the forces acting at the four nodes of e.

The essential idea of the warped stiffnesses is now as follows (see Figure 3.3 for an illustration):

Re

xe0

xe

RT
e xe

Ke(RT
e xe − xe0)

ReKe(RT
e xe − xe0)

Figure 3.3: Stiffness Warping.

Let us assume that we know the matrix Ze, which describes the rotation from the undeformed
element frame to its deformed frame. We will discuss its computation from the vectors xe and
x0e in the next Subsection. If we construct a 12 × 12 matrix Re with four Ze matrices on its
diagonal

Re =





Ze

Ze

Ze

Ze




(3.47)
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3.3 Warped Stiffnesses

we can simultaneously transform all the node positions of the deformed element e to the unro-
tated frame by computing:

RT
e xe (3.48)

This allows us to compute the unrotated element strain as:

εe = Be(R
T
e xe − x0e) (3.49)

The forces acting at the nodes in the unrotated frame can therefore be computed by multiplying
the displacement vector RT

e xe − x0e with the element’s stiffness matrix Ke. This expression
is finally rotated back to get the four forces acting on the nodes of the deformed element. This
whole procedure can be summarized as:

ReKe

�
RT

e xe − x0e )= fe(3.50)

or
ReKeR

T
e xe −ReKex0e = fe (3.51)

By zooming out again, we see that our new system of equations is basically given by:

K�x−K��x0 = f (3.52)

with the two stiffness matrices
K� =

�

e

ReKeR
T
e (3.53)

and
K�� =

�

e

ReKe (3.54)

We get the displacement vector u by solving the system 3.52 for x and computing u = x− x0.

3.3.3 Rotation Matrices

In the last Subsection we assumed that the rotation matrices Ze are known. We will now discuss
how to compute them using the deformed xe and undeformed nodes x0e. Let us assume that
the global node indices of element e are denoted as i, j, k, l so that the deformed nodes can be
expressed as xe =

�
xi

e,x
j
e,x

k
e ,x

l
e

�T and undeformed nodes as x0e =
�
xi

0e,x
j
0e,x

k
0e,x

l
0e

�T
. The

rotation matrix Ze can then be computed as follows:

1. Construct the two matrices

X0,e =



 xi
0e xj

0e xk
0e xl

0e

1.0 1.0 1.0 1.0



 (3.55)

and

Xe =



 xi
e xj

e xk
e xl

e

1.0 1.0 1.0 1.0



 (3.56)

from the deformed and undeformed nodal positions.
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3 Direct Analysis of Contact Interaction

2. Compute the following matrix:

XeX
−1
0,e =



 Ye te

oT 1.0



 (3.57)

3. Apply a singular value decomposition (SVD) to the upper left block matrix Ye:

Ye = UT
e ΣeVe (3.58)

4. Compute the element rotation matrix as Ze = UT
e Ve. (Note that the columns in Ze have

to be normalized!)

3.4 A More Flexible FEM Approximation

The FEM approximation we discussed so far is not flexible enough to approximate the deforma-
tion behavior of a general deformable object. The reason for that is that we assumed a homoge-
nous, isotropic Hookean material. In this Section, we therefore refine our linear constitutive
Equation 3.18 to an element-wise linear stress-strain relation. Thereafter, our final parameter-
ization based on isotropic elements is introduced and the new element stiffness matrices are
discussed. We conclude by introducing our final system of algebraic equations.

3.4.1 Element-Wise Linear Stress-Strain Relation

In Subsection 3.1.3 we assumed a material that follows Hooke’s law of elasticity. On the level
of an element this linear strain-stress relation is given by:

σe = Eεe (3.59)

where the matrix E is assumed to be the same for all elements e.

We refine this assumption and assume an element-wise linear stress-strain relation. In other
words, we assume the matrix E to be different for all elements e. The discretized constitutive
equation for element e is therefore:

σe = Eeεe (3.60)

This element-wise Hookean material allows us to better approximate inhomogeneous material
behavior.

3.4.2 Isotropic Elements

However, there are to many degrees of freedom if a general element-wise linear material is
assumed and our parameter fitting would get infeasible. We therefore assume an element-wise
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3.4 A More Flexible FEM Approximation

isotropic material. In other words, we define the matrix Ee to be (compare with the derivation
in Subsection 3.2):

Ee = λeF + αeG (3.61)

with the two isotropic elasticity constants λe and αe.

This formulation still allows to approximate anisotropic material behavior to some degree be-
cause the isotropic materials are defined on a per-element basis.

Hence, the final parameterization based on element-wise isotropic tetrahedra allows us to ap-
proximate linear inhomogeneous, pseudo-anisotropic material behavior

3.4.3 Stiffness Matrices

As we saw in the derivation of the discrete equilibrium equation in Subsection 3.1.6, the element
stiffness matrices can be computed as:

Ke = VeB
T
e EBe (3.62)

In case of an element-wise isotropic material, where we have an element dependent matrix Ee

we get:
Ke = VeB

T
e EeBe = λeVeB

T
e FBe + αeVeB

T
e GBe = λeCe + αeDe (3.63)

where Ce = VeBT
e FBe and De = VeBT

e GBe.

We get our final equation system by using these new element stiffnesses in the construction of
the two global stiffness matrices K� and K”:

If we introduce a global parameter vector p = [. . . , λe, . . . | . . . , αe, . . .]
T and local parameter

vectors pe = [λe, αe]
T , we can summarize our system as:

K�(p)x−K��(p)x0 = f (3.64)

with the unknown vector x and the two stiffness matrices

K�(p) =
�

e

ReKe(pe)R
T
e (3.65)

and
K��(p) =

�

e

ReKe(pe)R
T
e (3.66)

Note that we can get the system for a homogenous isotropic material by simply replacing the
local parameter vectors by pe = [λ, α]T .
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4
Measuring Contact Interactions

The major subject of this Chapter is the system we developed to acquire the kinds of contact
measurements we need to fit our model parameters. The development of such an acquisition
system is a critical step because all subsequent results depend on the quality of the measure-
ments we can acquire. The key challenge involved in building such a system is that contact
measurements cannot simply be observed but must be excited by a physical interaction with
the object. This, in turn, may lead to occlusions during the acquisition process. In spite of the
importance of the acquisition system we keep its description rather short as it is not the main
focus of this work. We start with a disquisition on our system and its individual components.
In Section 4.2, we briefly discuss the processing steps needed to obtain actual measurements
from the acquired data. We conclude by introducing a mathematical notation for our measured
contact interactions.

4.1 Acquisition System

The static deformation responses that are needed to estimate our model parameters consist of
surface displacements and corresponding contact forces. Our acquisition system is thus com-
posed of two major components: A trinocular stereo vision system to acquire the surface defor-
mation and force sensors to measure the corresponding forces.

Trinocular Stereo Vision System Figure 4.1 shows our trinocular stereo vision system which
consists of three Canon 40D cameras that capture images at a resolution of 3888× 2592. These
cameras are placed in a triangular configuration to minimize occlusions caused by the contact
probes during the data acquisition. We also built an external trigger device to synchronize the
triggering of the three cameras and integrated two light sources to ensure a uniform illumination
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4 Measuring Contact Interactions

during the acquisition process.

Figure 4.1: Our trinocular stereo vision system consists of three high-resolution cameras (indicated by

a red rectangle) and two light sources (indicated by green circles). The cameras are arranged

in a triangular setup. This arrangement helps to maximize the visibility during the capturing

of a contact interaction. The light sources make sure that the object is uniformly illuminated

during the acquisition.

The surface displacement of a static deformation response is measured by using a set of markers
that we paint on the object’s visible surface. Figure 4.2 illustrates the process of spray-painting
a sponge using four different colors. The 180 markers were painted on a regular grid to sim-
plify the later registration. However, this is not required in general. Our system is capable of
measuring viewpoint-registered marker positions to an accuracy of approximately 1 mm.

For the physical interactions we built contact probes with circular disks of different diameters
attached to the tip of an extra long, white-painted screwdriver. The position and orientation of
the contact probe is estimated using two makers on the shaft of the screwdriver.

Force Sensors To measure contact forces, we integrated force sensing resistors (FSR) in our
contact probes. We use the FSR Phidget Sensor Kit developed by Trossen Robotics1 to control
these sensing resistors. The force sensors allow use to measure force magnitudes of contacts
during the acquisition process. Furthermore, we synchronized the force sensor’s read operation
with the camera trigger signal. A contact probe with integrated force sensor is shown in Figure
4.3.

1http://www.trossenrobotics.com
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4.1 Acquisition System

(a) (b)

Figure 4.2: Painting a sponge. (a) Aerosol cans and templates used to paint colored markers on a sponge.

(b) Sponge with colored markers.

(a) (b)

Figure 4.3: Contact probe. (a) Contact probe with integrated force sensor. (b) Force sensing resistor

(red circle).
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4.2 Processing Steps

In the last Section, we saw how contact interactions can be acquired. In this Section, we will
discuss the necessary processing steps to obtain actual measurements from the acquired data.

The first step is to extract markers from the captured images. To this end, we use simple thresh-
olding in the CIELab color space followed by a correction step using morphological operations.
We do that for all the different marker colors independently. This procedure, even though sim-
ple, allows for a robust extraction of the markers.

In a second step, the marker positions have to be reconstructed in 3d. Accurate depth estima-
tion relies on finding markers between the calibrated stereo cameras [Bouguet 2006]. For this
purpose, the makers in the individual frames are labeled and correspondences are established.
A marker can be reconstructed if it is visible in at least two of the three camera images. These
reconstructed makers are then registered to a template mesh using a modified version of Horn’s
shape matching algorithm [Micheals and Boult 2000]. Even though the use of three cameras
reduces the number of occluded markers noticeably, occasional occlusions can not be avoided.
We therefore employ the linear shell-based approach [Bickel et al. 2007] in our work which
incorporates the prescribed displacements (visible markers) as boundary constraints, and, oth-
erwise, minimizes surface stretching and bending to estimate the displacement of the occluded
markers. As a result, we get a complete reconstruction of makers that describe the surface
deformation of a measured contact interaction.

As mentioned before, we estimate the position and orientation of a contact probe by using
two makers on the shaft of the screwdriver. The contact magnitude is measured by using a
calibrated FSR integrated at the top of the handle of the contact probe. For the calibration of
the force sensors, we simply use a balance and Newton’s second law of motion. The calibration
procedure is illustrated in Figure 4.4. We use our data acquisition system with its synchronized
image and force sensors to capture a set of images and corresponding FSR values while we
poke the balance with the to-be-calibrated contact probe (see Figure 4.4 (a)). The output of this
procedure is a set of sensor values v with corresponding weight values m. The weight values are
then converted to force values by multiplying the individual m’s with the gravitational constant
g. This allows us to fit a sensor response curve (see Figure 4.4 (b)) to the set of sensor-value-
force-pairs. Force magnitudes (in N ) can then be calculated by simply evaluating the fitted
response curve.

4.3 A Notation for Measured Contact Interactions

In the next Chapter, we will substitute measured displacements and corresponding forces into
the governing finite element equations to formulate our inverse problem. To this end, we intro-
duce a mathematical notation for our measured contact interactions here:

Deformation measurements record surface displacements and corresponding contact forces. We
denote the measured surface displacements as ū and the corresponding contact forces as f̄ .
However, it is often more convenient to use absolute positions of nodes instead of their dis-
placements. A second notation is therefore given by the pair: (x̄, f̄) where x̄ denotes the vector
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Figure 4.4: Force sensor calibration. (a) An image of the balance showing the “weight” of an applied

contact force. (b) Fitted sensor response curve for a typical FSR.

of measured nodal absolute positions. If multiple measurements are used together we indicate
that by using a subscript i for the i-th measurement.

Let us summarize: The notation (x̄, f̄) or (ū, f̄) is used for individual measurements and the
notation (x̄i, f̄i) or (ūi, f̄i) is used if multiple measurements are involved.

A set of acquired contact interactions of the sponge are summarized in Figure 4.5.
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4 Measuring Contact Interactions

Figure 4.5: Set of example deformations of the sponge.
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5
Inverse Analysis of Contact
Interactions

An inverse problem is a problem where the values of some model parameters must be obtained
from observed data. In our context, the observed data consists of measured contact interactions
and the model parameters are a set of inhomogeneous material properties. In other words,
we are trying to estimate a set of spatially varying material parameters of an object by using
observations on its surface only. Our problem is therefore ill-posed. In Chapter 3, we used
direct analysis to derive the set of governing finite equations that allows us to compute the
deformation response of a general object upon contact. If we substitute our measured contact
interactions into these finite set of equations we are able to formulate two different discrete
inverse problems with the material parameters as its unknowns: A linear inverse problem that
allows us to estimate the material parameters by minimizing a force-based energy and a non-
linear inverse problem where the parameters are fitted by minimizing a displacement-based
energy. Discrete inverse problems, as opposed to their continuous counterparts, might not only
be ill-posed but also ill-conditioned. The theory of regularization provides powerful techniques
to solve such discrete inverse problems by adding proper smoothness constraints, resulting in a
well-posed problem. We employ two kinds of constraints in our problem formulations: The first
kind enforces fitted parameters to be smoothness over neighboring elements in individual fitted
contact interactions and the second enforces the parameters to be smooth over corresponding
elements in all the fitted interactions.

Before we start with the inverse analysis of our specific problem, we will clarify some important
notions and briefly review the general linear and non-linear inverse formulations. In the two
subsequent Sections, our force- and displacement-based inverse problems are formulated.
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5.1 Linear and Non-linear Inverse Problems

According to Hadamard1, a problem is well-posed if it fulfills the following three conditions:

1. Existence: A solution always exists.
2. Uniqueness: The solution is unique.
3. Continuity: If the error in the input is small, the induced error in in the solution is small

as well.

Ill-posed problems, as opposed to well-posed problems, are extremely hard because non of
the above conditions are necessarily satisfied: If a problem is under-constraint, as ill-posed
problems typically are, solutions are usually ambiguous or might even not exist.

The third of the above conditions is also an extremely important property because it is directly
related to the stability and robustness of a solution. It determines what the effect of noise,
inherent in all physical measurements, might have on our solution.

In case of a discrete problem it could even get worse because even if it is well-posed, it might
still be ill-conditioned. Ill-conditioning itself might lead to potentially very sensitive solutions
if the input data is perturbated.

The theory of regularization provides powerful tools to improve the posedness and also the
condition of a general inverse problem by incorporating further information about the desired
solution.

In the following we briefly review the general formulations of linear and non-linear inverse
problems before we start with the derivations of our domain-specific formulations:

Linear Inverse Problem

A smooth and stable solution x̂ of an underdetermined linear system of equations

Ax = b (5.1)

can be computed by introducing a constraint matrix L that approximates, for instance, the first
derivative operator and by minimizing the following weighted combination of the system’s
residual and the smoothness constraints:

x̂ = arg min
x

�
||Ax− b||22 + γ2||Lx||22

�
(5.2)

with a weight γ, which we call regularization parameter, that controls the amount of regulariza-
tion.

The solution x̂ of 5.2 can be found by solving the equation system


 A

γL



x =



 b

o



 (5.3)

in a least squares sense.
1Jacques Salomon Hadamard, French mathematician, 1865-1963
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Non-Linear Inverse Problem

In case of an underdetermined system of non-linear equations

F (x) = y (5.4)

with F : Rn → Rm and n > m, a smooth and stable solution x̂ can be found by solving:

x̂ = arg min
x

�
||F (x)− y||22 + γ2||Lx||22

�
(5.5)

where γ denotes the regularization parameter and L the constraint matrix.

If we introduce a vector-valued function

G(x) =



 F (x)− y

γLx



 (5.6)

we can recast 5.5 as a non-linear least squares problem:

x̂ = arg min
x

||G(x)||22 (5.7)

Non-linear least squares solvers often take the vector-valued function G(x) and, optionally, its
Jacobian

JG(x) =



 JF (x)

γL



 (5.8)

as an input. JF (x) denotes the Jacobian of F (x).

The Influence of the Regularization Parameter γ

The influence of the regularization parameter γ is illustrated in Figure 5.1. Note that one must
give up the requirement of the residual norm to be zero. In our case, however, this is a de-
sired property to prevent overfitting and allows the model to generalize beyond the (potentially)
noisy) fitting data. We are instead seeking a solution x̂ that provides a good tradeoff between
a minimal residual norm and a minimal norm of the regularization term Lx. The amount of
regularization can be controlled by γ and the dependencies can be summarized in formulas as:

γ →∞ implies ||Lx||2 → 0 and ||Ax− b||2 →∞ or ||F (x)− y||2 →∞. (5.9)

and

γ → 0 implies ||Lx||2 →∞ and ||Ax− b||2 → 0 or ||F (x)− y||2 → 0. (5.10)

In words: Increasing the regularization parameter γ leads to smoother solutions x̂ but also to an
increase of the residual norm. On the other hand, if the regularization parameter is decreased
the residual gets smaller but the resulting solution is less smooth.
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||Lx||2

||A
x
−

b
|| 2

or
||F

(x
)−

y|
| 2

γ →∞

γ → 0

Figure 5.1: Influence of the regularization parameter γ.

5.2 Force-Based Inverse Analysis

The subject of this Section is a force-based inverse analysis of general contact interactions,
whose direct analysis was performed in Chapter 3. In contrast to a displacement-based analy-
sis, a force-based approach allows us to formulate our problem as a linear inverse problem. In
the next Subsection, we will start our discussion by analyzing an individual interaction. The
resulting parameter estimation is then extended in Subsection 5.2.2 so that material parame-
ters of multiple interactions can be fitted simultaneously. This extension allows us to enforce
smoothness of parameters over multiple fits, which turns out to be very useful for the smooth
blending of fitted interactions in following Chapter 6.

5.2.1 Inverse Analysis of an Individual Contact Interaction

In Chapter 3, we derived a finite set of equations that allows us to compute the deformation
response of a deformable object on a specific contact by assuming that the material properties
are known. In this Section, we will inversely use these equations to derive a linear force-based
inverse problem which allows us to estimate the material parameters by incorporating acquired
contact interactions from Chapter 4.

For the convenience of the reader, we repeat the result of the direct analysis here:

Let p = [. . . , λe, . . . | . . . , αe, . . .]
T denote the vector of all element-wise isotropic material

parameters and pe = [λe, αe]
T the vector of the parameters of an individual element. The

result of the direct analysis is the following system of equations that can be use to compute the
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5.2 Force-Based Inverse Analysis

deformation response x on a specific contact f :

K�(p)x−K��(p)x0 = f (5.11)

with stiffness matrices
K�(p) =

�

e

ReKe(pe)R
T
e (5.12)

and
K��(p) =

�

e

ReKe(pe) (5.13)

and element stiffnesses

Ke(pe) = Ke(λe, αe) = λeCe + αeDe (5.14)

By substituting a measured contact interaction (x̄, f̄) in the equation system 5.11, it can be
reformulated so that the parameter vector p is the unknown of a linear system of equations
A(x̄)p = f̄ :

The substitution of a measured interaction leads to:
�
�

e

λeReCeR
T
e +

�

e

αeReDeR
T
e

�
x̄−

�
�

e

λeReCe +
�

e

αeReDe

�
x0 = f̄ (5.15)

If we break the global vectors x̄ and x0 into 12 × 1 element vectors x̄e and x0e, we can refor-
mulate the above system as

�

e

�
λe

�
ReCeR

T
e x̄e −ReCex0e

�
+ αe

�
ReDeR

T
e x̄e −ReDex0e

��
= f̄ (5.16)

and realize that we can write the global force vector f̄ as a linear combination of element vectors
se and te: �

e

[λese + αete] = f̄ (5.17)

where
se = ReCeR

T
e x̄e −ReCex0e (5.18)

and
te = ReDeR

T
e x̄e −ReDex0e (5.19)

Note that we used
�

e as a sum over element vectors instead of element matrices here. This
is simply a one dimensional version of the matrix assembly procedure described in Subsection
3.1.8.

If we convert the vectors se and te to vectors of global size and collect them column-wise in
matrices S and T, we get our final linear system of equations with the parameter vector as its
unknown:

[S|T]p = A(x̄)p = f̄ (5.20)

with
A(x̄) = [S|T] (5.21)
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Note that the matrix A(x̄) is dependent on the measured deformation response x̄.

The equation system 5.20 is extremely sparse, but in general underdetermined. Its dimensions
are 3u×2t if u denotes the number of unconstrained nodes (nodes minus geometric constraints)
and t the number of elements e.

The next step is therefore to introduce proper smoothness constraints.

Enforcing Spatial Smoothness

The system A(x̄)p = f̄ is under-constrained and has, in general, infinitely many solutions for
a measured contact interaction (x̄, f̄). Hence, further information about the material properties
have to be incorporated. A reasonable assumption seems to be that the material properties of
an object with an inhomogeneous behavior are smoothly changing across its body. This obser-
vation can be incorporated into our discrete formulation by forcing parameters of neighboring
elements to be smooth:

We have two different kinds of material parameters, namely λe’s and αe’s, in our model. In
Subsection 3.4.3, we defined p to be the vector that collects all of the parameters:

p = [. . . , λe, . . . | . . . , αe, . . .]
T (5.22)

For the sake of clarity, we split the parameter vector p into two vectors l and a here:

l = [. . . , λe, . . .] (5.23)

and
a = [. . . , αe, . . .] (5.24)

Let us now derive the constraint matrix Ls that enforces the above-mentioned spatial smooth-
ness of our parameters. Note that constraint equations are only dependent on the finite element
discretization (geometry) and not on the kind of parameter. We therefore concentrate on the
λe’s in the following but the resulting constraint matrix can also be used to enforce spatial
smoothness of the αe’s:

Let us assume that e and e� are a pair of neighboring elements as illustrated in Figure 5.2. The
parameter vector l, in which the corresponding element parameters are highlighted, is given as:

l = [. . . , λe, . . . ,λe� , . . .] (5.25)

Our goal is now to formulate a constraint equation so that the difference between the parameter
values λe − λe� goes to zero if the regularization parameter goes to infinity. To this end, we
construct a row vector of the same size as our parameter vector l that has a 1 at index e and a−1
at index e� and is zero otherwise, and we get the constraint equation by setting the inner product
of this vector and the parameter vector l to zero.

The constraint matrix can therefore be constructed by repeating the above procedure for all the
neighboring element pairs (e, e�) and collecting the rows in a matrix Ls.
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e
e�

λe − λe� → 0 if γ →∞

Figure 5.2: An illustration of a spatial smoothness constraint equation.

This constraint matrix allows us to write our final equation system as





S T

γλ
s Ls O

O γα
s Ls




p =





f̄

o

o




(5.26)

from which we can get the parameter vector p = [l|a]T by solving it in a least squares sense.

Note that two regularization parameters γλ
s and γα

s were used - one for each parameter type.

Fitting a Homogenous Isotropic Behavior

To get the over-dermined equation system that allows us to fit a homogenous isotropic behavior,
we simply replace the λe’s and αe’s in Equation 5.17 by the global constants λ and α and get:

λ
�

e

se + α
�

e

te = [s|t]



 λ

α



 = A(x̄)p = f̄ (5.27)

where s =
�

e se and t =
�

e te are two long vectors and A(x̄) = [s|t] and p = [λ|α]T denote
the new matrix and corresponding parameter vector, respectively.
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Parameter Estimation Without Stiffness Warping

To get the equations for a fitting without stiffness warping, we can simply replace the rotation
matrices Re with 12× 12 identity matrices I.

The Equations 5.18 and 5.19 simplify to

se = Ce (x̄− x0) = Ceū (5.28)

and

te = De (x̄− x0) = Deū (5.29)

if a measured displacement ū instead of a x̄ is used.

5.2.2 Simultaneous Analysis of Multiple Interactions

In this Subsection, the simultaneous force-based inverse analysis of a set of n interactions is
discussed. We start with a short discussion on fitting a single set of material parameters to all
of the n interactions. However, fitting a single set only allows to approximate a linear material
behavior. More interesting is the simultaneous fitting of multiple sets - one per contact mea-
surement. As we will see in Chapter 6, an interpolation between those fitted sets enables us to
blend between the individual fitted FEM approximations during simulations of new interactions
and thereby to approximate even non-linear interaction behavior. However, to make the inter-
polation of parameters feasible, the fitted properties not only have to be smooth within but also
across fitted interactions. To this end, a second kind of smoothness is introduced that forces
parameters of corresponding elements of different FEM approximates to be smooth.

In the following, we assume that a set of n acquired contact measurements is given

(x̄i, f̄i), i = 1, . . . , n (5.30)

and that a set of matrices

Ai(x̄i), i = 1, . . . , n (5.31)

are computed from them:

In case of inhomogeneous materials, those matrices are calculate by using the Equations 5.17,
5.18 and 5.19

[Si|Ti], i = 1, . . . , n (5.32)

and in case of a homogeneous and isotropic materials by using 5.27:

[si|ti], i = 1, . . . , n (5.33)
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Fitting a Linear Inhomogeneous Material Behavior

A single set of inhomogeneous parameters p = [l|a]T can be fitted to the n measured interac-
tions by simply solving 



S1 T1

...
...

Sn Tn

γλ
s Ls O

O γα
s Ls





p =





f̄1
...

f̄n

o

o





(5.34)

in a least squares sense.

Furthermore, the corresponding weighted residual formulation is given as:

p̂ = arg min
p

�
n�

i=1

����[Si|Ti]p− f̄i
����2

2
+

����L(γλ
s , γα

s )p
����2

2

�
(5.35)

with parameter vector p = [l|a]T and constraint matrix

L(γλ
s , γα

s ) =



 γλ
s Ls O

O γα
s Ls



 (5.36)

Fitting a Linear Homogeneous Isotropic Material Behavior

In case of a single set of homogeneous and isotropic parameters p = [λ|α]T , smoothness con-
straints are unnecessary and we get the over-determined equation system





s1 t1

...
...

sn tn




p =





f̄1
...

f̄n




(5.37)

that has to be solved in a least squares sense.

The corresponding residual formulation is unweighted and can be expressed as

p̂ = arg min
p

�
n�

i=1

����[si|ti]p− f̄i
����2

2

�
(5.38)

where p = [λ|α]T denotes the parameter vector.

Fitting a Non-Linear Inhomogeneous Behavior

Let us now start with the discussion on the simultaneous fitting of multiple sets of parameters.
We first observe that the n parameter vectors pi = [li|ai]T can be fitted by sequentially solving
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the independent equation systems (compare with Equation 5.26)




Si Ti

γλ
s Ls O

O γα
s Ls




pi =





f̄i

o

o




(5.39)

in a least squares sense.

By incorporating these independent systems into one bigger system, we can turn this sequential
estimation procedure into a simultaneous one:

To this end, we collect all the matrices Si and Ti in block diagonal matrices

S∗ = diag (S1, . . . ,Sn) (5.40)

and
T∗ = diag (T1, . . . ,Tn) (5.41)

Furthermore, a block diagonal matrix with n copies of the constraint matrix Ls is introduced

L∗
s = diag (Ls, . . . ,Ls) (5.42)

If we now collect all the measured contact forces f̄i and all the li’s and ai’s in vectors

f∗ =
�
f̄T
1 , . . . , f̄T

n

�T
, (5.43)

l∗ = [l1, . . . , ln] (5.44)

and
a∗ = [a1, . . . , an] , (5.45)

respectively, the equation system




S∗ T∗

γλ
s L

∗
s O

O γα
s L∗

s




p =





f∗

o

o




(5.46)

can be constructed, which enables us to simultaneously fit all n parameter sets by solving it for
the unknown parameter vector p = [l∗|a∗]T .

However, as above-mentioned, further constraint equations have to be incorporated to not only
enforce smoothness within, but also across the fitted parameter sets. To this end, a second
constraint matrix L∗

m is introduced in the following:

As noted before, constraint equations are only dependent on geometry and not on the type of
parameters. We therefore focus again on the λ’s but our results equally hold for the parameters
of the α-type.
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Let us consider the two parameter vectors li and li+1 of two different FEM approximations i
and i + 1, in which the parameters λi

e and λi+1
e of element e are highlighted:

li = [. . . , λi
e, . . . ] (5.47)

and
li+1 = [. . . , λi+1

e , . . . ] (5.48)

Our goal is now to construct a set of constraint equations so that the differences between the
parameters corresponding to the same element e, namely λi

e − λi+1
e , goes to zero if the regular-

ization parameter goes to infinity (see Figure 5.3 for an illustration). This can be achieved by
multiplying the vector [li, li+1]T by a block matrix [I− I] (where I denotes the identity matrix),
and setting it to zero. If we extend this observation to the set of all l vectors, we get our final
constraint matrix

L∗
m =





I −I

I −I

I
. . .
. . . −I

I −I





(5.49)

e

e

λi
e − λi+1

e → 0 if γ →∞

i

i + 1

Figure 5.3: An illustration of a smoothness constraint over two measurements i and i + 1.

If we now add this second kind of smoothness constraints to the system 5.46, we get our final
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equation system 



S∗ T∗

γλ
s L

∗
s O

O γα
s L∗

s

γλ
mL∗

m O

O γα
mL∗

m





p =





f∗

o

o

o

o





(5.50)

that has to be solved in a least squares sense. Note that a set of four regularization parameters is
used: Two to control the spatial smoothness of the individual parameter types and two to control
their smoothness over the fitted interactions.

The corresponding weighted residual formulation is given as:

p̂ = arg min
p

�
n�

i=1

����[Si|Ti]pi − f̄i
����2

2
+

����L(γλ
s , γα

s , γλ
m, γα

m)p
����2

2

�
(5.51)

with parameter vector p = [l∗|a∗]T and constraint equations

L(γλ
s , γα

s , γλ
m, γα

m) =





γλ
s L

∗
s O

O γα
s L∗

s

γλ
mL∗

m O

O γα
mL∗

m




(5.52)

Fitting a Non-Linear Homogenous Isotropic Behavior

In case of multiple sets of homogenous isotropic parameters pi = [λi, αi]T , the block diagonal
matrices 5.40 and 5.41 reduce to

s∗ = diag (s1, . . . , sn) (5.53)

and
t∗ = diag (t1, . . . , tn) (5.54)

and the parameter vectors 5.44 and 5.45 to

l∗ = [λ1, . . . ,λn] (5.55)

and
a∗ = [α1, . . . ,αn] (5.56)

Furthermore, the spatial smoothness constraints get unnecessary and the identity matrices in
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5.49 reduce to 1’s:

L∗
m =





1 −1

1 −1

1
. . .
. . . −1

1 −1





(5.57)

The equation system for multiple sets of homogeneous and isotropic parameters is therefore
given as 



s∗ t∗

γλ
mL∗

m O

O γα
mL∗

m




p =





f∗

o

o




(5.58)

and we get the material parameters p = [l∗|a∗]T by solving it in a least squares sense.

The corresponding weighted residual formulation is

p̂ = arg min
p

�
n�

i=1

����[si|ti]pi − f̄i
����2

2
+

����L(γλ
m, γα

m)p
����2

2

�
(5.59)

with parameter vector p = [l∗|a∗]T and constraint equations

L(γλ
m, γα

m) =



 γλ
mL∗

m O

O γα
mL∗

m



 (5.60)

5.3 Displacement-Based Inverse Analysis

In this Section, we perform a displacement-based inverse analysis of our interactions. We
start again by analyzing an individual interaction before the simultaneous fitting of multiple
sets is discussed in Subsection 5.3.2. As opposed to the force-based inverse analysis, this
displacement-based approach leads to a non-linear inverse formulation and is therefore com-
putationally more expensive. However, as we will see in Chapter 7, this non-linear parameter
estimation turns out to be more robust in presence of noise and small measurement errors, which
is inherently the case when working with real-world data. It gives us better results than the lin-
ear formulation from the previous Section. Note that the derivation of the displacement-based
analysis follows a similar pattern as the one in 5.2. We therefore keep our discussion short.

5.3.1 Inverse Analysis of an Individual Contact Interaction

If we assume that the initial geometry x0 and the material parameters p = [l|a]T of a deformable
object are known, the deformation response on a contact f can be computed by solving the
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equation system
K�(p)x = f + K��(p)x0 (5.61)

with stiffness matrices
K�(p) =

�

e

ReKe(pe)R
T
e (5.62)

and
K��(p) =

�

e

ReKe(pe) (5.63)

and element stiffnesses

Ke(pe) = Ke(λe, αe) = λeCe + αeDe (5.64)

for the unknown x.

If we now multiply both sides of the equation system 5.61 with the stiffness matrix K�(p), we
see that the parameterized deformation response on a measured contact f̄ can be expressed as

x(p) = K�(p)−1
�
f̄ + K��(p)x0

�
(5.65)

Note that the inverse of the stiffness matrix K� is in general not sparse anymore.

Our displacement-based inverse problem is therefore to find the material parameters p that
minimize the difference between the parameterized and the measured deformation response -
expressed in formulas as:

p̂ = arg min
p

�
||x(p)− x̄||22

�
(5.66)

However, this non-linear system of equations is, as the careful reader might expect, under-
determined. We therefore have to include the spatial smoothness constraints from our linear
formulation (see Subsection 5.2.1) to get our final weighted residual formulation:

p̂ = arg min
p

�
||x(p)− x̄||22 + ||L(γλ

s , γα
s )p||22

�
(5.67)

with the constraint matrix

L(γλ
s , γα

s ) =



 γλ
s Ls O

O γα
s Ls



 (5.68)

The corresponding vector-valued function G that has to be solved in a non-linear least squares
sense is given as

G(p) =



 x(p)− x̄

L(γλ
s , γα

s )p



 (5.69)

and its Jacobian can be expressed as:

JG(p) =



 J(p)

L(γλ
s , γα

s )



 (5.70)
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where J(p) is the Jacobian of x(p)− x̄.

Note that the vector-valued function G is not convex in general. The optimization is therefore
not guaranteed to converge to a global minima. However, we observe that the function is better
behaved if a reasonably high regularization parameter is chosen.

The only missing part is the analytical expression for the Jacobian J(p), whose derivation is
given bellow.

The analytical expression for the element on the i-th row and the j-th column of J(p) is given
as:

Jij(p) =
∂

∂pj
[xi(p)− x̄i]

=
∂

∂pj

�
�

k

K�−1
ik (p)fk +

�

k

�

l

K�−1
ik (p)K��

kl(p)x0,l

�

=
�

k

��
∂

∂pj
K�−1

ik (p)

�
fk

�
+

�

k

�

l

��
∂

∂pj
K�−1

ik (p)

�
K��

kl(p)x0,l

�

+
�

k

�

l

�
K�−1

ik (p)

�
∂

∂pj
K��

kl(p)

�
x0,l

�

From this analytical expression of an individual element, we can derive the following expression
for J(p):

J(p) =
�

· · · ∂K�−1

∂pj
f̄ · · ·

�

+
�

· · · ∂K�−1

∂pj
K��x0 · · ·

�

+
�

· · · K�−1 ∂K��

∂pj
x0 · · ·

�

∂K�−1

∂pj
= −K�−1∂K�

∂pj
K�−1 (5.71)

∂K�

∂pj
=






∂
∂λe

Re [λeCe + αeDe]RT
e =

�
ReCeRT

e

�
if pj = λe

∂
∂αe

Re [λeCe + αeDe]RT
e =

�
ReDeRT

e

�
if pj = αe

(5.72)

∂K��

∂pj
=






∂
∂λe

Re [λeCe + αeDe] = {ReCe} if pj = λe

∂
∂αe

Re [λeCe + αeDe] = {ReDe} if pj = αe

(5.73)

In the Equations 5.72 and 5.73, we used the notation {Ae} to indicate that the element matrix
Ae is of global size.

Note that the above expression for J(p) allows us to compute the Jacobian by only using one
for-loop and matrix-vector multiplications otherwise. We also point out that the matrices in
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5.72 and 5.73 are constant and also extremely sparse (only 16 3×3 blocks are non-zero). These
constancy and sparsity properties enables pre-computation and also more efficient vector-matrix
multiplications.

Fitting a Homogenous Isotropic Behavior

If we are only interested in fitting a homogeneous isotropic behavior, represented by a 2 × 1
parameter vector p = [λ, α]T , the above expressions simplify tremendously:

The non-linear equation system in the residual formulation

p̂ = arg min
p

�
||x(p)− x̄||22

�
(5.74)

is now overdetermined and regularization is therefore not needed.

The vector-valued function G simplifies to

G(p) = x(p)− x̄ (5.75)

and its Jacobian is given as

JG(p) =
�

∂K�−1

∂λ f̄ ∂K�−1

∂α f̄
�

+
�

∂K�−1

∂λ K��x0
∂K�−1

∂α K��x0

�

+
�

K�−1 ∂K��

∂λ x0 K�−1 ∂K��

∂α x0

�

with the matrices

∂K�

∂λ
=

∂

∂λ

�

e

Re [λCe + αDe]R
T
e =

�

e

ReCeR
T
e (5.76)

∂K�

∂α
=

∂

∂α

�

e

Re [λeCe + αeDe]R
T
e =

�

e

ReDeR
T
e (5.77)

∂K��

∂λ
=

∂

∂λ

�

e

Re [λCe + αDe] =
�

e

ReCe (5.78)

∂K��

∂α
=

∂

∂α

�

e

Re [λeCe + αeDe] =
�

e

ReDe (5.79)

5.3.2 Simultaneous Analysis of Multiple Interactions

In the following, we briefly discuss the simultaneous displacement-based inverse analysis of set
of n interactions (x̄i, f̄i), i = 1, . . . , n. However, because of the similarities to the force-based
analysis, we only provide the weighted residual formulations here and leave it to the reader to
derive the corresponding vector-valued functions G and their Jacobians JG.
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Fitting a Linear Inhomogeneous Behavior

In case of a single set of spatially varying parameters p = [l|a]T , the weighted residual formu-
lation is given as

p̂ = arg min
p

�
n�

i=1

||xi(p)− x̄i||22 + ||L(γλ
s , γα

s )p||22

�
(5.80)

with the constraint matrix

L(γλ
s , γα

s ) =



 γλ
s Ls O

O γα
s Ls



 (5.81)

Fitting a Linear Homogenous Isotropic Behavior

In case of a linear homogeneous isotropic behavior, the single set of globally constant parame-
ters p = [λ|α]T can be found by minimizing the unweighted residual formulation

p̂ = arg min
p

�
n�

i=1

||xi(p)− x̄i||22

�
(5.82)

in a least squares sense.

Fitting a Non-Linear Inhomogeneous Behavior

The multiple sets of spatially varying parameters pi = [li|ai]T , collected in a vector p = [l∗|a∗]T
with

l∗ = [l1, . . . , ln] (5.83)

and
a∗ = [a1, . . . , an] , (5.84)

can be estimated by using the following weighted residual formulation:

p̂ = arg min
p

�
n�

i=1

||xi(pi)− x̄i||22 + ||L(γλ
s , γα

s , γλ
m, γα

m)p||22

�
(5.85)

with the constraints matrix

L(γλ
s , γα

s , γλ
m, γα

m) =





γλ
s L

∗
s O

O γα
s L∗

s

γλ
mL∗

m O

O γα
mL∗

m




(5.86)
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where the block matrix L∗
m is defined as

L∗
m =





I −I

I −I

I
. . .
. . . −I

I −I





(5.87)

Fitting a Non-Linear Homogeneous Isotropic Behavior

Last but not least, the estimation of multiple sets of homogenous isotropic parameters pi =
[λi|αi]T , collected in a vector p = [l∗|a∗]T with

l∗ = [λ1, . . . ,λn] (5.88)

and
a∗ = [α1, . . . ,αn] , (5.89)

can be done by minimizing the weighted residual formulation

p̂ = arg min
p

�
n�

i=1

||xi(pi)− x̄i||22 + ||L(γλ
m, γα

m)p||22

�
(5.90)

with the constraint matrix

L(γλ
m, γα

m) =



 γλ
mL∗

m O

O γα
mL∗

m



 (5.91)

and reduced block matrix

L∗
m =





1 −1

1 −1

1
. . .
. . . −1

1 −1





(5.92)

in a least squares sense.
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6
Synthesis of New Interactions

In this Chapter, we discuss the primary motivation of our measurement-based approach, namely
the synthesis of physically-plausible deformation behavior. In the last Chapter, we used inverse
analysis to fit static linear FEM approximations to acquired measurements by identifying a set
of model parameters. This parameter identification was performed for a collection of different
material behaviors including linear and non-linear, homogenous isotropic and also inhomoge-
neous ones. Hence, all the requisites for an accurate direct analysis are met and deformations
on new contacts can be computed. However, simulations of contact interactions are dynamic
and our analysis and acquisition of interactions was exclusively performed for the static case.
We therefore use force or load instead of time increments in our synthesis.

We also integrated stiffness warping [Müller and Gross 2004] in our simulation loop. Note that
stiffness warping, as discussed in [Müller and Gross 2004], assumes a dynamic FEM simula-
tion. In contrast to their work, stiffness warping is used in a static context here. These warped
stiffnesses together with the incremental loading enables us to effectively approximate geomet-
ric non-linearities which would lead otherwise to severe artifacts under large deformations due
to the linear Cauchy strain tensor.

For non-linear material behavior, however, the model has to be further extended. This non-linear
behavior is modeled by smoothly changing material parameter sets by an interpolation in the
corresponding parameter space. We use two different schemes in our simulation framework: For
homogeneous non-linear materials, a simple RBF-based interpolation scheme [Carr et al. 2001]
is adopted, and, for an inhomogeneous material behavior, we employ a novel strain-based in-
terpolation technique similar to [Bickel et al. 2007]. The interpolation of estimated parameters
using these two schemes allows us to blend the corresponding fitted linear FEM approximations
during the synthesis phase and thereby to approximate non-linear stress-strain relations. Fur-
thermore, the additional computational cost for the interpolation of parameters in our simulation
loop is low and allows synthesis of non-linear interaction behavior at interactive rates.
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6 Synthesis of New Interactions

This Chapter is organized as follows: In the next Section, we briefly introduce the concept of
incremental loading and also discuss the integration of warped stiffnesses into our simulation
loop. The resulting synthesis is then further refined in Section 6.2 to synthesize contacts with
different kinds of material behaviors. We discuss our two interpolation schemes in Subsections
6.2.3 and 6.2.4.

6.1 Incremental Loading and Stiffness Warping

Let us assume that an object with initial geometry x0 and unspecified linear stress-strain relation
is given. To simulate the dynamic behavior of this object upon a contact f , the vector x is usually
made time-dependent and a discretized version of the following ordinary differential equation
(ODE) of second order is used:

Mẍ + Cẋ + K(x− x0) = f (6.1)

where M denotes the mass, C the damping and K the stiffness matrix.

In our framework, however, a discretization based on time increments, even though possible, is
not in the line with our static analysis and acquisition. The fundamental observation on which
our approach is based on is that accurate direct analysis can only be made if inverse analysis was
solved to determine the model parameters. However, our acquisition system is only acquiring
the static deformation behavior of an object. Furthermore, an object’s density distribution –
required to construct a physically-accurate mass matrix M – is not measured. We therefore use
load instead of time increments to synthesize our interactions. To this end, the force vector f is
split into increments of length ∆f as illustrated in Figure 6.1.

f
fk

∆f
f

||f ||2

Figure 6.1: Illustration of the incremental loading.
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6.2 Simulation of Deformations Using Various Material Models

The simulation loop based on our static direct analysis (compare with Equations 3.64, 3.65 and
3.66) together with the incremental loading can be summarized as:

precomputations
forall elements e compute Ke

end precomputations
initialization

xk := x0

fk := o
end initialization
loop

if ||fk||2 + ∆f < ||f ||2 then
fk+1 := fk + ∆f f

||f ||2
else

break
end if
forall elements e compute Re from x0e to xk,e

assemble K� =
�

e ReKeRT
e

assemble K�� =
�

e ReKe

solve K�xk+1 = fk+1 + K��x0 for xk+1

xk := xk+1

fk := fk+1

end loop

Note that we use warped stiffnesses in the above loop.

This simulation loop is refined in the following Section so that contacts with objects of specific
material behaviors can be synthesized.

6.2 Simulation of Deformations Using Various Material
Models

In Chapter 5, we used inverse analysis to estimate a set of material parameters. We use those
fitted parameters here to synthesize physically-plausible interactions upon new contacts f . In
case of a linear material, we only have one set of parameters that describes the deformation
behavior through the whole simulation. The synthesis of contacts with linear homogeneous
and inhomogeneous materials is discussed in the next two Subsections. More interesting are
the cases, in which interpolation and multiple parameter sets are involved, namely the cases
where non-linear behavior is approximated. The synthesis of the non-linear behaviors with
their corresponding interpolation schemes are discussed in the Subsections 6.2.3 and 6.2.4.
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6 Synthesis of New Interactions

6.2.1 Linear Homogeneous Isotropic Material

In case of an object with a linear homogeneous isotropic material behavior, only two global
elasticity constants, namely λ and α, are fitted. Those constants do not change during the
synthesis and the element stiffnesses can therefore be pre-computed as follows:

precomputations
forall elements e compute Ce and De

forall elements e compute Ke = λCe + αDe

end precomputations

The rest of the simulation loop stays the same.

6.2.2 Linear Inhomogeneous Material

We model linear inhomogeneous materials by fitting a single set of spatially varying parameters
λe and αe. Those parameters, as the linear homogeneous ones, do not change during simulations
of new contacts and the element stiffnesses can be pre-computed by using Equation 3.63:

precomputations
forall elements e compute Ce and De

forall elements e compute Ke = λeCe + αeDe

end precomputations

The synthesis loop is unchanged otherwise.

6.2.3 Non-Linear Homogeneous Isotropic Material

If an object of initial geometry x0 and with non-linear homogeneous isotropic material behav-
ior is given, multiple parameter sets (λi, αi) are fitted to the individual measured deformation
responses (x̄i, f̄i). Because we have now deformation-dependent parameters, interpolation has
to be used in our synthesis loop. This interpolation in parameter space allows us to effectively
approximate a non-linear stress-strain-relation of a homogeneous isotropic material. For the
interpolation, we employ Radial Basis Functions (RBF’s) [Carr et al. 2001]. During the simu-
lation loop, the current deformation response xk is used to calculate the new parameter values
by using the following weighted sums:

λ =
�

i

wλ
i φ(||xk − x̄i||2) (6.2)

α =
�

i

wα
i φ(||xk − x̄i||2) (6.3)

We use the Euclidean distance metric to compute the differences between the current and mea-
sured deformation responses and employ biharmonic basis functions in our current implemen-
tation.
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6.2 Simulation of Deformations Using Various Material Models

The RBF weights wλ = [. . . , wλ
i , . . .]T and wα = [. . . , wα

i , . . .]T can be pre-computed by
solving two systems of equations

Φwλ = [. . . , λi, . . .]T (6.4)

and
Φwα = [. . . , αi, . . .]T (6.5)

where the matrix Φ is defined as Φij = φ(||x̄i − x̄j||).
The synthesis loop can therefore be summarized as:

precomputations
forall elements e compute Ce and De

forall measurements i compute weights wλ
i and wα

i

end precomputations
initialization

xk := x0

fk := o
end initialization
loop

if ||fk||2 + ∆f < ||f ||2 then
fk+1 := fk + ∆f f

||f ||2
else

break
end if
forall elements e compute Re from x0e to xk,e

interpolate λ =
�

i w
λ
i φ(||xk − x̄i||2)

interpolate α =
�

i w
α
i φ(||xk − x̄i||2)

forall elements e compute Ke = λCe + αDe

assemble K� =
�

e ReKeRT
e

assemble K�� =
�

e ReKe

solve K�xk+1 = fk+1 + K��x0 for xk+1

xk := xk+1

fk := fk+1

end loop

Note that the element stiffnesses are now changing depending on the actual deformed state of
the object.
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6 Synthesis of New Interactions

6.2.4 Non-Linear Inhomogeneous Material

As we discussed in Sections 5.2 and 5.3, a non-linear inhomogeneous material is approximated
by fitting multiple sets of spatially varying parameters

pi = [li|ai]
T (6.6)

with li = [. . . , λi
e, . . .] and ai = [. . . , αi

e, . . .] to the individual measurements (x̄i, f̄i).

We propose a novel strain-based interpolation technique similar to [Bickel et al. 2007] to inter-
polate between estimated parameters in parameter space:

The element strain εe, as defined in Equation 3.49, provides a powerful measurement of an
element’s change in form and size. It therefore seems to be natural to incorporate those εe’s in
an interpolation scheme used to interpolate element parameters over space and measurements.
To this end, we collect all the fitted element strains ε̄i

e (6 × 1 vectors) of measurement i in
vectors:

ēi = [. . . , (ε̄i
e)

T , . . .]T (6.7)

The fitted element strain ε̄i
e corresponding to element e and measurement i can be computed by

using
ε̄i

e = Be(R̄
i
e)

T (x̄i,e − x0e) (6.8)

where the matrices R̄i
e denote the fitted rotations.

During simulations, the current deformation response xk is used to compute the global strain
vector e, which in turn allows us to interpolate the element parameters λe and αe by using the
following weighted sums:

λe =
�

l

wλ
e,lφ(||e− ēl||e) (6.9)

and
αe =

�

l

wα
e,lφ(||e− ēl||e) (6.10)

where we used a locally-weighted strain-based distance metric (compare with [Bickel et al. 2007])

||e− ēl||e =

��

e�

||εe� − ε̄i
e�||22e−c||εe�−ε̄i

e||22 (6.11)

Note that the parameter c can be used to control the degree of decay.

The weights wλ
e,l and wα

e,l used in the above weighted sums, can be pre-computed by solving a
set of element-wise equation systems:

1. Compute matrices Φe,p,q = φ(||ēp− ēq||e) for all elements e (p and q denote measurement
indices).

2. Form the parameter vectors bλ
e = [. . . , λi

e, . . .] and bα
e = [. . . , αi

e, . . .] for all elements e
(i denotes the measurement index)

3. Compute the weight vectors wλ
e = [. . . , wλ

e,i, . . .] and wα
e = [. . . , wα

e,i, . . .] (i denotes the
measurement index) by solving Φewλ

e = bλ
e and Φewα

e = bα
e for every element e.
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6.2 Simulation of Deformations Using Various Material Models

The resulting synthesis loop can be summarized as:

precomputations
forall elements e compute Ce and De

forall elements e and measurements i compute weights wλ
e,i and wα

e,i

end precomputations
initialization

xk := x0

fk := o
end initialization
loop

if ||fk||2 + ∆f < ||f ||2 then
fk+1 := fk + ∆f f

||f ||2
else

break
end if
forall elements e compute Re from x0e to xk,e

forall elements e compute strains εe = BeRT
e (xk,e − x0e)

construct e from strains εe

forall elements e interpolate λe =
�

i w
λ
e,iφ(||e− ēi||e)

forall elements e interpolate αe =
�

i w
α
e,iφ(||e− ēi||e)

forall elements e compute Ke = λeCe + αeDe

assemble K� =
�

e ReKeRT
e

assemble K�� =
�

e ReKe

solve K�xk+1 = fk+1 + K��x0 for xk+1

xk := xk+1

fk := fk+1

end loop
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6 Synthesis of New Interactions
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7
Model Validation

Model validation is an important step in the model building sequence. In our case, a in-depth
analysis would include a thorough investigation of both, our parameter estimation techniques
and also of our synthesis with its corresponding interpolation schemes. In this Chapter, however,
only our non-linear displacement-based estimation technique is investigated. We use a data set
consisting of four individual force-displacement measurements of our sponge as a basis for
our discussion (see Figure 7.1). The presented results show the influence of both kinds of
smoothness constraints that are weighted with regularization parameters.

7.1 Fitting a Homogeneous Material Behavior

The result of fitting two homogenous and isotropic parameters to measurement 4 is illustrated in
Figure 7.2. The color coding shows the fitting error: In the red areas, the fitting error is around
5 mm, yellow means an error of about 2 mm and grey indicates areas where the error is bellow 1
mm. The results of the independent fitting of two globally constant homogeneous and isotropic
material parameters to the four measurements are summarized in Table 7.1. We observe that
the Young’s moduli E are always positive and seem to be in a physically-plausible range. The
fitted Poisson ratio, however, is only positive for measurement 1 and is negative otherwise. As
mentioned in Chapter 3, such a material behavior is rare.

The results of fitting two global isotropic elasticity constants to all 4 measurements are sum-
marized in Table 7.2. We observe that the measurement 4 has the most influence on the fitted
parameters.

We also fitted multiple sets of homogeneous isotropic parameters to the four measurements.
The corresponding results are summarized in Table 7.3. We included weighted smoothness
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7 Model Validation

(1) (2) (3) (4)

Figure 7.1: A set of 4 example deformations.

measurement i 1 2 3 4

λi 1.1614 1.2730 1.1445 0.9347

αi 0.0039 -0.0083 -0.2291 -0.2802

Ei 1.1574 1.2812 1.2819 1.0468

νi 0.0034 -0.0065 -0.2002 -0.2998

min. error [mm] 0.0043 0.0133 0.0592 0.0549

avg. error [mm] 0.0295 0.0829 0.1749 0.2334

max. error [mm] 0.2226 0.3716 0.6132 0.7012

res. norm [mm] 0.5576 1.3820 2.7450 3.5654

Table 7.1: Fitting two homogeneous isotropic parameters to each measurement independently.

constraints over the measurements in our optimization. We observe that a high regularization
(γ = 1000.0) leads to the same results as in Table 7.2. On the other hand, if the regularization is
relaxed (γ = 0.01), the results are very close to the ones we got for our individual fits (compare
with values in Table 7.1.

7.2 Fitting a Inhomogeneous Material Behavior

The results of fitting a linear homogeneous material behavior to the measurement 4 of our data
set is summarized in Figure 7.3 and the simultaneous fitting of a non-linear inhomogeneous
material behavior to all four measurements is illustrated in Figures 7.4 and 7.5.
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7.2 Fitting a Inhomogeneous Material Behavior

measurement i 1 2 3 4

λ 1.0237

α -0.2448

E 1.1514

ν -0.2392

min. error [mm] 0.0054 0.0141 0.0498 0.0713

avg. error [mm] 0.0302 0.0878 0.1801 0.2302

max. error [mm] 0.2845 0.3696 0.5603 0.7371

res. norm [mm] 4.7746

Table 7.2: Fitting a linear homogeneous isotropic material behavior to all 4 measurements.

Figure 7.2: Fitting a homogeneous isotropic material behavior to measurement 4.
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7 Model Validation
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Figure 7.3: Fitting a set of spatially varying parameters to measurement 4. We used spatial smoothness

constraints controlled by a regularization parameter γs in our non-linear least squares for-

mulation. Left column: γs = 100.0. Middle column: γs = 1.0. Right column: γs = 0.1.

The images on the top row, namely (a), (b) and (c), show the color-coded fitting error. On

the second row ((d), (e) and (f)) plots of the fitted Young’s moduli are shown. The plots

on the bottom row, namely (g), (h) and (i) show the fitted Poisson ratio’s. We observe that

the smoothness of parameters and the fitting error decrease from the left to the right column

as someone would expect (see Figure 5.1). The results in the right column are clearly an

over-fitting.
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7.2 Fitting a Inhomogeneous Material Behavior

measurement i 1 2 3 4

γ{λ,α}
m = 0.01 λi 1.1614 1.2730 1.1445 0.9347

αi 0.0038 -0.0083 -0.2291 -0.2802

Ei 1.1576 1.2812 1.2819 1.0469

νi 0.0033 -0.0065 -0.2002 -0.2998

γ{λ,α}
m = 1000.0 λi 1.0237 1.0237 1.0237 1.0237

αi -0.2448 -0.2448 -0.2448 -0.2448

Ei 1.1514 1.1514 1.1514 1.1514

νi -0.2392 -0.2392 -0.2392 -0.2392

Table 7.3: Fitting a non-linear homogeneous isotropic material behavior to the 4 measurements.
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Figure 7.4: Fitting multiple sets of spatially varying parameters by using constraints within (controlled

by the regularization parameter γs) and across (controlled by the regularization parameter

γm) the 4 measurements (1:red, 2:green, 3:blue, 4:black). The four plots show the fitted

Young’s moduli. The regularization parameters are set to (a) γs = 1000 and γm = 1000,

(b) γs = 10 and γm = 1000, (c) γs = 1000 and γm = 1 and (d) γs = 10 and γm = 1. If

the smoothness constraints over the measurements, controlled by γs, are relaxed (top row to

bottom row), the parameters are less smooth over the individual measurements. On the other

hand, if the spatial smoothness constraints are relaxed (from left column to right column)

the range of parameter values increase and the resulting parameters are less smooth within

the individual measurements.
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Figure 7.5: Same experiment as in Figure 7.4, but the plots are showing the fitted Poisson ratios instead.
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8
Conclusion and Outlook

This thesis investigated non-linear deformation behavior of solid objects and presented a novel
measurement-based deformation model. The model is based on FEM theory and allows to
estimate material properties from a set of example data. During runtime, physically-plausible
non-linear deformations can effectively and efficiently be simulated by interpolating material
properties in a suitable material space.

We started by acquiring a comprehensive set of example deformations. By using force probes
and a marker-based stereo-vision system, an object was sampled at several different locations
with varying force intensities. The resulting force-displacement measurements were recorded
and stored in a database.

We investigated deformation techniques based on FEM modeling to formulate an inverse prob-
lem that has material parameters as its unknowns. It turned out that the inverse problem, given
only a small set of force-displacement measurements, is ill-posed. However, by using regu-
larization techniques based on smoothness constraints between neighboring and correspond-
ing elements within and across measurements, we were able to successfully turn our ill-posed
displacement-based inverse formulation into a well-posed one.

In general, there are two possibilities to formulate the regularized inverse as a least squares
problem: Either, the error of the displacement field, or the error of the force field is minimized.

Minimizing the error of the displacement field results in a non-linear least squares optimization,
whereas the force-based approach can be stated as a linear least squares problem. The computa-
tionally more efficient minimization of the force error, however, turned out to be very sensitive
to noise and also to be badly conditioned. On the other side, the non-linear optimization func-
tion based on the displacement error is not convex in general and therefore more challenging
to fit. Another major drawback of the non-linear formulation is its computational cost caused
by a inverse stiffness matrix that destroys the sparsity structure of the included matrices. We
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8 Conclusion and Outlook

observed, however, that reasonable regularization parameters together with physically-plausible
initial start values lead to a well-behaved target function. The resulting fitting techniques can
then be used to estimate material properties that range from linear homogeneous and isotropic
to non-linear inhomogeneous behaviors.

Fitting material parameters of static linear-FEM approximations can basically be viewed as fit-
ting deformation approximations. Our novel locally-weighted strain-based interpolation scheme
used to interpolate estimated parameters in parameter space can therefore be viewed as a blend-
ing of linear approximations. Interpolation and fitting together allows to synthesize new non-
linear interactions, even though computationally efficient and numerically stable linear de-
formable FEM is used. Concluding, our measurement-based approach therefore fills the gap
between linear deformable FEM models and their non-linear formulations.

However, there are still several open question and potential improvements. Our interpolations
are based on RBF’s which are known to extrapolate badly. The extrapolation behavior has
therefore to be further investigated. We also need to run more validation on our model when
new deformations are synthesized. That includes leave-one out and also cross-validations.

Interesting future work would be to extend our FEM-based model to also include the dynamic
behavior of deformable objects. Our inverse formulation and also our data acquisition would
have to be extended to estimate and measure, for instance, and object’s density distribution.

We believe that our pioneering and interdisciplinary work has great potential to be useful in
the development of more accurate physically-based deformable models in computer graphics.
Future applications could include a data-base of measured deformation behaviors that allow a
special-effect animator to add different kinds of material behavior to the subjects he is modeling.
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