From Digital to Physical: Computational
Aspects of 3D Manufacturing

A DISSERTATION PRESENTED
BY
MoriTz NIKLAUS BACHER
TO
THE SCHOOL OF ENGINEERING AND APPLIED SCIENCES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DocTOR OF PHILOSOPHY
IN THE SUBJECT OF
COMPUTER SCIENCE

HARvVARD UNIVERSITY
CAMBRIDGE, MASSACHUSETTS
SEPTEMBER 2013



© 2013 - MoRITZ NIKLAUS BACHER
ALL RIGHTS RESERVED.



Thesis advisor: Prof. Hanspeter Pfister Moritz Niklaus Bécher

From Digital to Physical: Computational Aspects of 3D
Manufacturing

ABSTRACT

The desktop publishing revolution of the 1980s is currently repeating itselfin 3D,
referred to as desktop manufacturing. Online services such as Shapeways have be-
come available, making personalized manufacturing on cutting edge additive man-
ufacturing (AM) technologies accessible to a broad audience. Affordable desk-
top printers will soon take over, enabling people to fabricate custom 3D models at
home.

Contemporary AM technologies have advanced enough to enable 3D printing
at high resolution, in full-color, and with mixtures of soft and hard materials. As
opposed to subtractive manufacturing (SM) such as milling or drilling, they can
fabricate highly complex assemblies without the need for a manual assembly of
individual components. Yet, one of the major issues holding back widespread use
of AM is the lack of efficient algorithms for the automated fabrication of digital
CG, and the reproduction of physical content. Besides, we do not have tools at our
disposal that aid us with the design of multi-material content or complex assembly
structures.

For physical reproduction, we strive for methods to acquire properties such as,
e.g., reflectance (appearance) or elasticity (deformation behavior) from real-world
objects, representing them digitally, then automating their fabrication using AM.

However, the vast majority of digital 3D content are directly designed on comput-
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ers, hence, potentially exhibit a highly non-physical behavior. To fabricate such
content, we seek methods for the automated estimation of physical models from
these digital ones.

This dissertation examines computational aspects of 3D manufacturing. In par-
ticular, we investigate design tools and automated fabrication of an object’s de-
formation behavior, articulation, and geometry. We present a complete process
for measuring, representing, simulating, and physically fabricating an object’s elas-
tic deformation behavior. This process enables the reproduction of physical de-
formation behavior. Furthermore, we introduce a technique for the automated
fabrication of articulated models, estimated from the most widely used format in
character animation — so called skinned meshes. Our technique estimates assem-
blies, approximating this inherently non-physical input in a piecewise linear man-
ner. Lastly, we propose a method for the scale-aware fabrication of static geom-
etry, capable of abstracting, then engraving details that cannot be fabricated on a

pre-specified 3D printer.
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The purpose of computing is insight, not numbers.

Richard Hamming

Introduction

The desktop publishing revolution of the 1980s is currently repeating itself in
3D, referred to as desktop manufacturing. With contemporary additive manufac-
turing (AM) technologies, we can 3D print models with stunning detail using a
wide range of materials including plaster, paper, elasto- and hard plastics, as well

as several metals. Other AM technologies enable printing in full-color or with mix-



tures of soft and hard materials, within the same model and print job. With AM,
we can fabricate highly complex assemblies that, unlike traditional manufacturing
such as milling or drilling, do not require any manual assembly of individual com-
ponents. We seem only steps away from what Neil Gershenfeld refers to as “per-
sonal fabricators” (PFs) [2005], devices envisioned to build objects at the atomic
level. While PFs are still more fiction than reality, we will soon be able to print
such assemblies, consisting of mechanical and deformable parts, with custom re-
flectance and scattering properties, and with embedded sensors and actuators — all
on a single AM device and as single assembled pieces.

Moreover, online services such as Shapeways have become available, making
personalized manufacturing on such cutting edge AM devices accessible to a broad
audience, thereby taking on the role of print shops in the early stages of the revo-
lution in 2D. Affordable desktop printers will soon be available, enabling people
to fabricate personalized 3D content at home at the press of a button.

Despite these technical advances, AM is still of limited use due to the lack of
efficient tools and algorithms for the automated fabrication of digital, and the re-
production of physical content. And, we do not have tools at our disposal that aid
us with the design of multi-material content or complex assembly structures.

Both digital CG and physical objects are complex functions of space and time.
Their appearance varies with position and orientation, and their elasticity, plas-
ticity, and viscosity properties capture their behavior when undergoing deforma-
tions. For physical reproduction, we strive after methods for acquiring these prop-

erties from real-world objects, representing them digitally, then automating their



fabrication using AM. However, the vast majority of digital 3D content are directly
designed on computers, hence, potentially exhibit a highly non-physical behavior.
To fabricate such content, we seek methods for the automated estimation of phys-
ical models from these digital ones.

This dissertation examines computational aspects of 3D manufacturing an ob-
ject’s deformation behavior, articulation, and geometry. In particular, we present a
complete process for measuring, representing, simulating, and physically fabricat-
ing an object’s elastic deformation behavior. While our process allows to physically
reproduce deformation properties, it is by no means restricted to inputs sampled
from real-world objects. Probes can also be taken from simulations of deformable
models, enabling the fabrication of digital content.

Furthermore, we introduce a technique for the automated fabrication of artic-
ulated models, estimated from the most widely used format in character anima-
tion — so called skinned meshes. In contrast to the input to our reproduction pro-
cess, these skinned representations are inherently non-physical. Moreover, ani-
mated characters for feature film or computer games are often purposefully over-
exaggerated, exhibiting a toon-like articulation. Our technique estimates assem-
blies, approximating these non-physical deformable input models in a piecewise
linear manner.

In addition to the above, we propose a method for the scale-aware fabrication of
static geometry. Although an object’s detailed geometry may render correctly at
any screen resolution and far camera views, features too fine and thin may be fused

or break during printing. Prior work has addressed the automated detection and



thickening of such critical features [Stava et al. 2012]. However, while thicken-
ing leads to pleasing results when printing models at mid- to large scales, and with
strong and detailed materials, it results in blobby models when we aim for small
scales or print at lower resolutions and with weaker materials. Our method is ca-
pable of abstracting, then engraving such surface features. While we avoid weak
output models using our abstraction, we keep as much of the perceived detail as

possible by engraving.

1.1 OUTLINE

After reviewing related work in computer graphics and relevant fields in the next
chapter, we give ashort primer on contemporary additive manufacturing, and their
advantages over traditional manufacturing techniques (Chapter 3).

As indicated in Figure 1.1.1 in brown, we will introduce two measurement sys-
tems — one simple-to-build and hand-held (Section 4.4), one fully automated (Sec-
tion 5.6) — that allow acquiring force-displacement samples of a wide range of de-
formable objects, including human soft tissue.

In Chapter 4, we then use sets of such example deformations to construct con-
vincing deformable “clones” of physical objects (Figure 1.1.1, red). By doing so,
we avoid complex selection and tuning of physical material parameters, yet re-
tain the richness of non-linear heterogeneous elastic behavior. We represent each
force-displacement sample as a spatially-varying stress-strain relationship in a finite-

element model. We then model the material by a non-linear interpolation of these



stress-strain relationships in strain-space. Our run-time simulation algorithm is
based on incremental loading, making it suitable for interactive computer graphics
applications. We present the results of our approach for several non-linear mate-
rials and biological soft tissue, with accurate agreement of our model to the mea-
sured data.

Next, we introduce our reproduction process (Figure 1.1.1, blue), enabling the

PHYSICAL
r==—=—=1

DIGITAL

r==—=—=1

Figure 1.1.1: Computational Aspects of 3D Manufacturing: To probe an
object’s elastic deformation behavior, we built two acquisition systems (brown,
Sections 4.4 and 5.6). From acquired deformation probes, we first estimate digi-
tal, deformable “clones” (red, Chapter 5), then physically reproduce them using
AM (blue, Chapter 5). Next, we estimate fabricatable articulated characters
with internal joints from skinned input meshes (green, Chapter 6). Final 3D
printed characters have durable joints with a frictional design for character pos-
ing. Lastly, we estimate abstracted models from a detailed input geometry, then
engrave fine detail to ensure it is still perceived in the final printouts (orange,
Chapter 7).



automated fabrication of digital deformation behavior on multi-material AM de-
vices. Our process starts with measuring deformation properties of a set of print-
able base materials using our automated measurement system ( Section 5.6), fol-
lowed by representing each of them as a non-linear stress-strain relationship using
the data-driven technique described in Chapter 4. We then introduce an optimiza-
tion process that finds the best combination of stacked layers of base materials,
given a user-specified or measured deformation behavior in form of example defor-
mations. We demonstrate a complete “physical cloning” process by acquiring and
fabricating the deformation behavior of several objects with complex non-linear
and heterogeneous material properties.

In Chapter 6 and as illustrated in Figure 1.1.1 in green, we introduce our tech-
nique to fabricate articulated characters from skinned meshes. We first extract a set
of potential joint locations. From this set, together with optional, user-specified
range constraints, we then estimate mechanical friction joints that satisfy inter-
joint non-penetration and other fabrication constraints. To avoid brittle joint de-
signs, we place joint centers on an approximate medial axis representation of the
input geometry, and maximize each joint’s minimal cross-sectional area. We pro-
vide several demonstrations, manufactured as single, assembled pieces using 3D
printers.

Before we conclude with a summary and outlook in Chapter 8, we discuss our
scale-aware fabrication of detailed geometry in Chapter 7 (Figure 1.1.1, orange):
we first estimate medial ball representations of our input geometry (union of in-

terior balls) and its embedding (union of exterior balls). Next, we abstract non-



fabricatable detail by analyzing radii along edges of a medial graph connecting all
exterior balls, then marking a subset as interior. Thereafter, we extract the sur-
face separating interior from exterior balls, resulting in a watertight mesh, free of
self-intersecting faces. We engrave non-fabricatable detail by unifying the union
of ball representations of our original input with offset ball representations of our

abstraction.

1.2 CONTRIBUTIONS

All our contributions summarized herein are bridging the gab between the phys-

ical and digital in one way or the other:

Sections 4.4 and 5.6 We contribute two measurement systems tailored for the
non-invasive acquisition of elastic deformation behavior: one with a hand-
held probe, one with a probe attached to a 4 DOF robotic arm. We use
stereo-vision subsystems to track painted markers during interactions, mak-
ing the acquisition of surface displacements independent of the object’s ap-
pearance properties and robustness w.r.t. occlusions during active probing.
Our hand-held system is well-suited for the sampling of physical objects and
human tissue at arbitrary locations, varying angles, and with custom con-
tact shapes. Our automated system is tailored for repeatable high precision
acquisition of elastic materials. The resulting force-displacement samples
serve us as input to our data-driven digital cloning and physical reproduc-

tion.



Chapter 4 Given a set of elastic deformation samples, we fit a static co-rotational
FEM formulation to each of these force-displacement pairs. To this end,
we discretize a solid model into homogeneous, isotropic tetrahedra, then
estimate the per-element Poisson ratios and Young’s moduli from the mea-
sured displacement constraints and applied forces. To tackle this undercon-
strained, inverse problem, we regularize with a Laplacian matrix, enforcing
smoothness of parameters between neighboring elements. For simulations

of a captured elastic behavior, we use incremental loading.

Chapter 5 We propose a complete process for the physical reproduction and de-

sign of elastic deformable materials using AM.

Chapter 6 We introduce a technique for the automated fabrication of an articu-
lated deformable character on an AM device. Our method takes a skinned
mesh as input, then estimates a fabricatable single-material model that ap-
proximates the 3D kinematics of the corresponding virtual articulated char-

acter in a piece-wise linear manner.

Section 6.4.1 We show that an analysis of skinning weights leads to a plausible
segmentation of the character’s geometry into rigid body parts. Transitions

between neighboring segments mark potential joint locations.

Section 6.4.2 We propose novel geometric approximate models of joint strength
that enable the estimation of strong mechanical friction joints by maximiz-

ing their minimal cross-sectional areas.



Section 6.4.4 To ensure strong and functional joints in our output model, we in-
troduce a collision resolution that allows to keep as much of the “fabricat-

able” input articulation as possible, while avoiding inter-joint penetration.

Chapter 7 We propose an automated processing, enabling the small-scale fabri-
cation of detailed static geometry. Inspired by souvenir manufacturing, we
abstract features too fine and thin, then engrave them so that they are still

perceived in printouts.

Sections 7.4 and 7.5 We extend a representation of unions of interior and exte-
rior medial balls [Amenta et al. 2001a;b] with abstraction and set boolean
operations that enable the selective closing of concavities, and the unifica-
tion, intersection, and difference of volumes represented by these balls. For
closing, we propose analyzing the change of rate of medial ball radii along
branch ends of the exterior medial axis. Abstractly speaking, these opera-

tions enable the editing and merging of medial axis transforms.

1.3 PUBLICATIONS

Chapters 4, 5, and 6 present material published in the following peer-reviewed

publications.

Chapter 4 B. Bickel, M. Bicher, M. A. Otaduy, W. Matusik, H. Pfister, M. Gross.
Capture and Modeling of Non-Linear Heterogeneous Soft Tissue. In Proceed-
ings of ACM SIGGRAPH (New Orleans, USA, August 3-7, 2009), ACM

Transactions on Graphics, vol. 28, no. 3.



Chapter 5 B. Bickel, M. Bicher, M. A. Otaduy, H. R. Lee, H. Pfister, M. Gross,
W. Matusik. Design and Fabrication of Materials with Desired Deformation
Behavior. In Proceedings of ACM SIGGRAPH (Los Angeles, USA, July 25-

29, 2010), ACM Transactions on Graphics, vol. 29, no. 3.

Chapter 6 M. Bicher, B. Bickel, D. L. James, H. Pfister. Fabricating Articulated
Characters from Skinned Meshes. In Proceedings of ACM SIGGRAPH (Los
Angeles, USA, August 5-9, 2012), ACM Transactions on Graphics, vol. 31,

no. 4.

During the time period of this thesis (but not directly related) following work-

shop papers were published:

1. A. Peters Randles, M. Bacher, H. Pfister, E. Kaxiras. A Lattice Boltzmann
Simulation of Hemodynamics in a Patient-Specific Aortic Coarctation Model.
STACOM 2012 Workshop, Held in Conjunction with MICCAI 2012, LNCS

vol. 7746, Springer, 2012.

2. H. Zhang, J. K. Lai, M. Bicher. Hallucination: A Mixed-Initiative Approach
for Efficient Document Reconstruction. The 4th Human Computation Work-

shop (HCOMP), 2012.
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Either write something worth reading or do something worth
writing.

Benjamin Franklin

Related Work

Before diving into the specifics of capturing and modeling deformable objects,
physically cloning such “deformables”, and automating the fabrication of skinned
characters and simplified geometry, we discuss work related to these topics in and
beyond computer graphics.

We start with an overview of manufacturing work in graphics, then discuss prior

11



work on measuring deformations of physical objects in Section 2.2. Thereafter, we
review the large body of prior art on the simulation of deformable models in me-
chanical engineering and graphics in Section 2.3. We extend our review to physical
reproduction in Section 2.4. Next, we discuss work on animation and toy manu-
facturing (Section 2.5) as they are most closely related to our fabrication work on
skinned characters. For our fabrication-related geometric processing, we review

prior work in computational geometry and graphics in Section 2.6.

2.1 FABRICATION IN COMPUTER GRAPHICS

Triggered by the recent advances and popularity of 3D manufacturing technolo-
gies, the computer graphics community has intensified their efforts in bridging
the gab between the digital and the physical. While capture and data-driven tech-
niques have a long tradition, the reverse process of fabricating digital content has
only recently gotten the attention of the broader community.

To automate this process, we have to successfully map three components of a
given virtual model to reality: its two static properties, namely geometry and ap-
pearance, and its dynamic properties such as, e.g., its articulation or deformation
behavior.

For the 3D manufacturing of geometry, three key problems have been addressed
by prior work: while “stress relief” [Stavaetal. 2012] and Zhou etal’swork [2013]
detect and correct structurally unsound geometry, “chopper” [Luoetal. 2012] and
“make it stand” [Prévost et al. 2013 ] allow to partition a model into 3D-printable

parts (scalability) and make it stand as initially intended (balance). We comple-

12



ment these three techniques with a geometric processing framework that allows to
simplify geometry in a scale-aware manner. We defer a detailed review of closely
related work to Section 2.6.

Our community has also devoted efforts to the fabrication of appearance prop-
erties such as a model’s reflectance and subsurface scattering: Weyrich and col-
leagues [2009] use computer-controlled milling to manufacture custom surface
reflectance and Matusik et al. [2009] 2D ink printing to fabricate spatially-varying
isotropic reflectance. Anisotropy has been addressed using opaque ink on a reflec-
tive substrate [ Malzbender etal. 2012 ],a combination of 3D and UV printing [ Lan
etal. 2013 ], orwave optics [ Levin etal. 2013 ]. To approximate a model’s homoge-
neous and inhomogeneous subsurface scattering, Dong et al. [2010] and Hasan
et al. [2010] fabricate layers of varying thickness of translucent materials using
milling and 3D printing. More recently, Papas et al. [2013] use continuous pig-
ment mixtures to avoid discretization artifacts for homogeneous scattering of the
previous two techniques.

In our work, we address two key aspects of a model’s behavior under motion.
Firstly, we reproduce a model’s deformation behavior using multi-material print-
ing (see Chapter 5). Secondly and as discussed in Chapter 6, we approximate
the articulation of skinned characters — the most widely used format in anima-
tion — in a piecewise linear manner. Later (but considered concurrent), Cali et
al. [2012] propose an approach aiding the design of articulated models. However,
unlike ours, their technique starts off with static geometry, while we automatically

estimate printable, jointed toy models from a format that encodes articulation.

13



While our articulated characters are manually posed, Zhu et al. [2012] and Coros,
Thomaszewski, and colleagues [2013] propose systems for the automated design
of mechanically actuated, animated characters. The design of actuated, deformable
characters from a set of target poses has been studied by Skouras et al. [2013].
Moreover, Bickel et al. [2012] propose a method to physically clone faces. Most
recently, “OpenFab” [2013] and “Spec2Fab” [2013a] were introduced, facilitat-
ing the design and fabrication of multi-material content.

Besides the above, our community has contributed tools and techniques to de-
sign and fabricate cloth [ Okabe et al. 1992], paper craft [ Mitani and Suzuki 2004;
Kilian et al. 2008; Chen et al. 2013b], pop-ups [Hoiem et al. 2005; Li et al. 2010;
2011], plush toys [Mori and Igarashi 2007], reliefs [Weyrich et al. 2007; Alexa
and Matusik 2010], 3D puzzles [Lo etal. 2009; Xin et al. 2011; Song et al. 2012],
custom-made metallophones [ Umetanietal. 2010], holography [Reggetal. 2010],
multilayer models [Holroyd et al. 201 1], furniture [Lau et al. 2011], baloons [Sk-
ouras etal. 2012], caustics [ Papas etal. 2011], and masonry models [ Whiting et al.
2012; Panozzo et al. 2013]. Others use shadow imagery [Mitra and Pauly 2009;
Baran et al. 2012; Bermano et al. 2012] and planar slices to approximate geome-
try [McCrae et al. 2011; Hildebrand et al. 2012; Schwartzburg and Pauly 2013],
and propose a 2D cutting tool [Rivers et al. 2012b] and 3D sculpting aid [Rivers

etal. 2012a] to support humans during manual manufacturing.
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2.2 DEFORMATION CAPTURE

Even though variants of tensile testing [ Hart 1967 ] allow to identify characteris-
tics of composite materials [ Smits et al. 2007 ] and soft tissue [ Bursa and Zemanek
2008], specimen dimensions are commonly prescribed. In contrast, we aim for
systems that are easy-to-use for users unfamiliar with the mechanics of materials
and allow to sample the elastic deformation behavior of objects without the need
to alternate their rest pose geometry (preservation of an object’s static and dynamic
properties).

To measure force-displacement samples of deformable materials and human tis-
sue, we use a combination of stereo-vision acquisition systems and force sensors

similar to earlier approaches [Pai et al. 2001].

2.3 MODELING DEFORMATION BEHAVIOR

Researchers in many fields, ranging from mechanical engineering to biology,
have long studied the problem of modeling complex elasticity properties. For a
recent survey of deformation models in computer graphics, we refer the interested
reader to [ Nealen et al. 2006].

Mechanical Models A common approach to model the non-linear stress-strain
behavior of complex materials and human tissue is to devise a constitutive model,
then tune its parameters until they best fit empirical data. However, while hypere-
lastic models such as, e.g., the Ogden model [Ogden 1997] capture various behav-

ior regimes of materials and tissue well, this parameter tuning approach is tedious
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and utterly complex as it relies on accurate modeling of the layered geometry (e.g.,
the bones, fat, and muscles for facial tissue), rich excitation of material regimes,
and accurate measurement of forces and deformations (even in typically inacces-
sible regions). Despite the complexity of the approach, it has seen large applica-
tions in graphics since the pioneering work by Terzopoulos et al. [ Terzopoulos
etal. 1987], as it can lead to stunning results with the appropriate amount of effort.
Some examples of complex bio-mechanical models in computer graphics include
the neck [Lee and Terzopoulos 2006], the torso [Zordan et al. 2004; Teran et al.
2005; DiLorenzo etal. 2008], the face [Koch et al. 1996; Magnenat-Thalmann et al.
2002; Terzopoulus and Waters 1993; Sifakis et al. 2005 ], and the hand [Sueda et al.
2008].

Measurement-Based Model Fitting To circumvent the complexity of param-
eter tuning, several authors have proposed measurement-based model fitting ap-
proaches. The seminal work of Pai et al. [2001] presents a capture and modeling
system for a deformable object’s shape, elasticity, and surface roughness. Their
deformable model is based on a matrix representation of Green’s function [James
and Pai 1999], and was later extended to increase fitting robustness by Lang and
colleagues [2002], and to handle viscoelasticity by Schoner et al. [2004]. Our
approach shares their strategy for measuring surface displacements as the result
of applied forces, but, unlike theirs, is not limited to linear material behavior and
does not rely on global response functions. Sifakis et al. [2005] give a different
spin to measurement-based modeling approaches, as they learn the relationship

between facial muscle activation and skin positions. Others, particularly in biome-

16



chanics, have explored measurement-based fitting of parameters of various con-
stitutive models: Schur and Zabaras [1992] use non-liner least squares to esti-
mate Young’s modulus, while Becker and Teschner [2007] employ a linear least
squares formulation to estimate both, Young’s modulus and Poisson’s ratio. The
estimation of non-linear viscoelastic materials and plasticity have been addressed
by Kauer [2002] and Kajberg and Lindkvist [2004], respectively. Our work bor-
rows from these approaches for the estimation of each individual sample of the
stress-strain relationship. However, this alone is not sufficient for capturing the
rich non-linear behavior of soft tissue. In contrast to previous work, the realism of
our material model is greatly enhanced with spatially-varying non-linear interpo-
lation in strain space.

Data-driven Methods Purely data-driven techniques have gained large popu-
larity in computer graphics, as they produce highly realistic results for phenom-
ena that are otherwise extremely complex to model. The interpolation of light-
field samples [Buehler et al. 2001] allows simulating the illumination of complex
scenes, while data-driven reflection models [Matusik et al. 2003 ] represent each
bidirectional reflectance distribution function (BRDF) through a dense set of mea-
surements. Data-driven methods have also been applied to several other aspects
of deformation modeling in computer graphics, such as facial wrinkle formation
from local skin deformations [Ma et al. 2008; Bickel et al. 2008], grasping of ob-
jects [Kry and Pai 2006], skeleton-driven cloth wrinkles [Kim and Vendrovsky
2008], body-skin deformation [Park and Hodgins 2006], or learning of skeleton-

driven skin dynamics [ Park and Hodgins 2008 ]. Our method is a mixture of model
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fitting techniques (i.e., estimating stress-strain parameters from local samples) and
data-driven methods (i.e., using tabulated stress-strain parameters and non-linear
interpolation during runtime).

Shape Modeling Another common approach to model deformations is shape
modeling [Botsch and Sorkine 2008]. Some of the existing approaches rely on
predefined examples [Sloan et al. 2001; Allen et al. 2002; Sumner et al. 2005],
or even exploit interpolation [Bergeron and Lachapelle 1985; Lewis et al. 2000;
Blanz et al. 2003 ]. However, these techniques cannot model deformations as a re-
action to contact in the way our technique does. Some recent approaches connect
shape modeling with physically-based reactive models by rigging using templates
of forces [Capell et al. 2005] or skeletal interpolation of elastic forces [ Galoppo
etal. 2009]. Yet, unlike ours, these approaches cannot model a general non-linear,

heterogeneous deformation behavior.

2.4 PHYSICALLY REPRODUCING DEFORMATION BEHAVIOR

For our physical reproduction of deformation behavior, we introduce a com-
plete pipeline to acquire, model, design, and fabricate desired deformation prop-
erties using multi-material 3D printing. Similar reproduction pipelines have also
been proposed for subsurface scattering [Dong et al. 2010; Hagan et al. 2010; Papas
etal. 2013].

While modern multi-material printers [Stratasys 2013 ] allow to print detailed
structures with spatially-varying mixtures of soft, rubber-like and hard, plastic-like

materials, we lack tools to design and reproduce such deformable materials. For
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physically fabricating a desired deformation behavior, we estimate a layered ap-
proximate model consisting of printable base materials, tailored for manufacturing
on such multi-material devices.

To represent our base materials, we build on our data-driven technique that we
discuss in detail in Chapter 4 with some notable adjustments. First, by restricting
the types of materials to homogeneous ones, our model requires far fewer degrees
of freedom. Homogeneity of the base materials is not a limitation in our case, since
we achieve inhomogeneity in the final output materials by combining various ho-
mogeneous materials. Second, we increase the robustness of the fitting process by
fitting one single non-linear model to all input examples simultaneously.

Recent work in graphics aims at modeling high-resolution heterogeneities even
when the resolution of the discretization is considerably coarser [ Kharevych et al.
2009; Nesme et al. 2009]. This process, known as homogenization, tries to find pa-
rameter values of a constitutive model sampled at low resolution such that the be-
havior of the object best matches the heterogeneous material. The first step of our
reproduction process can be considered as a variant of homogenization, where the
fine-scale inhomogeneous material is an actual physical one. In the second step,
however, we take the opposite approach to homogenization, generating a hetero-
geneous object that fits coarse force-deformation data from small-scale materials
with known behavior.

Digital materials, composed of a set of discrete voxels, can exhibit widely vary-
ing material properties [Hiller and Lipson 2009]. A general introduction to the

optimization of spatial material distributions can be found in [Bendsoe and Sig-
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mund 2003 ].

As the design space increases exponentially with the number of possible combi-
nations of base materials, evolutionary algorithms [ Kicinger et al. 2005 ] are a pop-
ular non-linear optimization strategy. In contrast, we apply a branch-and-bound

search strategy in combination with clustering.

2.5 FABRICATING ARTICULATED CHARACTERS

In our 3D manufacturing work on articulated characters, we estimate piecewise-
rigid, jointed volume models from input characters whose articulation is encoded
in its skin.

Articulated characters are widespread in computer animation, with linear blend
skinning (LBS) and example-based approaches common [Lewis et al. 2000; Mohr
and Gleicher 2003; Kavan et al. 2008]. Most character rigging methods either es-
timate a skeleton or LBS from a mesh [Baran and Popovi¢ 2007] or estimate a
skinned character model from example poses [ Kry et al. 2002; Mohr and Gleicher
2003; Wang et al. 2007] or input animations Uames and Twigg 200 5]. We focus
on articulation specified as a linear blend skin as it is the most widely used format.
However, current AM techniques do not support printing of skinned meshes. Ex-
isting tools only convert their appearance and shape properties and ignore their
articulation.

Because our targeted output models share strong similarities with articulated
toys such as dolls or puppets, and action figures, we draw inspiration from the large

body of patents filed on this topic. They describe many mechanical joints ranging
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from basic swivel to elaborate, multi-part designs [Abbat 1993; Ferre 2000] that
overcome common structural and range shortcomings. However, none of them is
based on a geometric model of joint strength that complies with range constraints
like our hinge and ball-and-socket designs. To make our joints posable, we fabri-
cate small protrusions similar to [ Grey 1999; Wai 2006] that cause friction under
joint motion but extent their ideas to prevent fusion during manufacturing.
When recasting our joint optimizations as pure geometric problems, we draw
inspiration from structural engineering [Beer etal. 2011]: to increase the strength
ofasimple structure, civil engineers identify and maximize its critical cross-sectional
area. In graphics, similar ideas have been used to automate the generation of truss
structures [ Smith et al. 2002 ] and procedural models of buildings [Whiting et al.

2009].

2.6 SCALE-AWARE FABRICATION

Our scale-aware simplification for manufacturing is most closely related to mesh
simplification. However, while we aim for reducing the triangle count in typical
simplification, we are most concerned with features too thin and fine in a manu-
facturing context.

Mesh simplification addresses the problem of reducing the complexity of small
or distant models and got a tremendous amount of attention after Clark’s early
work [Clark 1976]. Prominent techniques including vertex clustering [ Rossignac
and Borrel 1993 ], vertex merging [ Garland and Heckbert 1997] based on quadric

error metrics, besides voxel-based [Cohen et al. 1996], envelope-based [ Cohen
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etal. 1996], and progressive [Hoppe 1996] approaches. However, while our tech-
nique shares the capabilities of alternating a model’s global topology properties
with [Rossignac and Borrel 1993; Cohen et al. 1996], our overall goal is to reduce
its complexity w.r.t. minimal feature sizes rather than polygon count. While we
draw inspiration from the perceptual-driven abstraction work by Mehra and col-
leagues [ Mehra et al. 2009 ], we focus on manufacturing constraints not addressed
in their work.

Mesh repair While we assume our input to be manifold, closed, and intersec-
tion free, our method directly applies to models consisting of several connected
components, containing self-intersections, non-manifold faces, and open bound-
aries by using Jacobson et al’s generalized winding numbers [Jacobson et al. 2013 ]
as a pre-processor. For an exhaustive review of work prior to [Jacobson etal. 2013 ],
we refer the interested reader to a recent survey [Attene et al. 2013 ].

Fabricating Geometry Closely related to our work is stress relief [Stava et al.
2012 ] where the authors propose the use of local thickening, hollowing, and strut
insertion to reduce the high stresses in 3D models prior to printing. Our method
complements this work in that it uses global abstraction and local engraving to
gradually simplify models while avoiding weak links and non-fabricatable features.

Medial Axis Transform (MAT) The extraction of approximate unions of me-
dial ball representations has gotten a tremendous amount of attention since Blum’s
pioneering work [1967]. Blum observed that a subset of the Voronoi diagram of
a dense enough sampling of a given curve or surface, approximates their medial

axes. In 2D, all Voronoi vertices lie close to the true axes for such samplings. In 3D,
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however, only a subset of these vertices are close, even for arbitrarily dense sam-
plings [Amentaetal. 1998]. This observationled to the definition of poles [Amenta
etal. 1998; Amenta and Bern 1998]: Voronoi vertices that are furthest away from
samples, one on either side of the surface. However, we found that this subset of
3D Voronoi vertices is rather conservative leading to noisy reconstructions when
converting unions of filtered balls back to surface representations. For an exhaus-
tive review of methods to extract and process the MAT, we refer the interested
reader to a recent book [Siddigi and Pizer 2008 ] and survey [Attali et al. 2009].
Power Crust and Alpha Shapes We base our work on the rigorous power crust
algorithm [Amenta et al. 2001a;b]: given a set of points, their algorithm computes
an approximate medial axis and surface mesh, referred to as power shape and crust.
Applied to the point cloud reconstruction problem, their remarkable technique
guarantees the resulting mesh to be “water-tight”, and self-intersection free. More-
over, sharp corners and edges are reconstructed with high fidelity. We extend their
framework with an adaptive Poisson-disk sampling [ Corsini et al. 2012], guaran-
teeing that corners and edges are well-preserved when processing a given input
mesh. In earlier work, Amenta and colleagues [Amenta et al. 1998; Amenta and
Bern 1998] formulated a sampling requirement for their algorithms. Our sampling
is minimal w.r.t. this requirement, keeping sampling complexity low in flat regions
far from the medial axis. Furthermore, we introduce several geometric processing
operators, acting directly on the unions of medial balls representations: set union
and other boolean operators, abstraction, and engraving. Our abstraction is simi-

lar to alpha shapes [Edelsbrunner and Miicke 1994] in that it produces a “tighter”

23



convex hull. However, unlike theirs, our method allows to control which concave

corners to round off and produces a manifold output.
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... “Stereolithography” is a method and apparatus for mak-
ing solid objects by successively “printing” thin layers of a cur-

able material ... one on top of the other.

Charles W. Hull, Inventor of 3D Printing

Additive Manufacturing: A Primer

Throughout this thesis, we exclusively use additive manufacturing (AM) tech-
nologies for the 3D fabrication of our models. While the above quote, taken from
the seminal patent filed on this topic [Hull 1986], explains the essence of additive
manufacturing well, we hereafter give the unfamiliar reader a brief introduction.

We start with a comparison of additive manufacturing to traditional, subtractive
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manufacturing (SM) in Section 3.1, followed by an overview of contemporary AM
technologies in Section 3.2. Subsequently, we review multi-material printing in

Section 3.3 and conclude with a discussion on printing assemblies in Section 3.4.

3.1 ADDITIVE VS. SUBTRACTIVE MANUFACTURING

Similar to the way a 2D printer prints a document line-by-line, a 3D printer
builds a given model layer-by-layer. As opposed to adding materials, traditional
subtractive manufacturing such as milling, cutting, or drilling remove materials.
AM has several advantages over traditional manufacturing techniques. While sub-
tractive processes offer higher flexibility in the selection of end-use materials, they
place severe limitations on the input geometry. Models with undercuts (areas
where one part of the model overhangs another) cannot be fabricated using tra-
ditional manufacturing techniques. Almost all AM technologies overcome these
geometric limitations by using a supporting structure that can be removed after
printing. Such supporting structures can either be made of less densely printed
build material — the material the final part is made from - or an additional support

material.

3.2 CONTEMPORARY AM TECHNOLOGIES

We can categories current AM technologies according to type (how layers are
deposited) and materials. Among the first and most prominent are extrusion-

based techniques such as fused deposition modeling (FDM). FDM devices un-
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wind filaments (mostly thermoplastics) from a coil to a heated extrusion nozzle
which melts and drops the material onto the printing tray. They typically use less
densely printed build material for the supporting structure.

A second category are formed by technologies that use granulated materials
(e.g., plastic, metal powders, or plaster). These techniques build up a granular bed
layer-by-layer, fusing the material powder at cross-sections of the rasterized 3D
model. While lasers (selective laser sintering, SLS) or droplets of binding materi-
als (inkjet 3D printing) are commonly used for the fusing, they all use the unfused
material to support overhanging parts. A closely related category is laminated ob-
ject manufacturing (LOM) where laser cutting is used to trace along contours of
cross-sections at the top sheet of a stack of glued paper, plastic or metal laminates.

Currently highest resolution systems rely on photopolymerization and produce
solid parts by curing a liquid resin using light activation. While stereolithography
(SLA) - the oldest technology in this category — is similar to laser sintering in that
it uses lasers to harden the resin in a layer-by-layer manner, the material bed is a

fluid rather than a granulate.

3.3 MULTI-MATERIAL PRINTING

While true multi-material printing is yet in its early stages [ Lipson 2005; Alonso
2009 ], commercially available systems such as the Objet Connex series [ Stratasys
2013 ] use blends of materials that are all based on such photopolymer resigns. Ma-
terial is deposited from predefined mixtures of currently two liquids and solidified

after deposition of each layer using UV light. The two sealed cartridges, holding
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the liquids, can be replaced with other pairs, leading to materials with different
properties. Objet’s support material is gel-like and can be removed with a water-
jet and their Connex 500 printer has a resolution of 600 DPI on the horizontal x
and y axis, and 1600 DPI on the vertical z axis.

Despite the shared material base, we can currently print with subsets of over
a 100 different materials with characteristics ranging from rubber- to plastic-like,
within the same model and print job. While we cannot reproduce materials ex-
actly, we can approximate, e.g., a given deformation behavior reasonably well as

we will see in Chapter s.

3.4 PRINTING ASSEMBLIES

While traditional manufacturing of models with movable parts commonly in-
volves a manual assembly step, we can fabricate such assemblies in a single print
job when using AM as we illustrate in Figure 3.4.1 with a hinge joint example. Al-
though the tolerance between movable parts needs to be calibrated for each ma-
terial and AM device, the design and manufacturing of highly complex assemblies
such as our articulated characters in Chapter 6, is greatly facilitated.

Unlike with AM, such a hinge joint would need to be split into at least three
parts for subtractive processes as we cannot directly assemble the final hinge from

the upper and lower components.
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(2) (b) (c) (d)

(e) (f) () (h)

(i) () (k) 0
Figure 3.4.1: Printing Assemblies With AM, we can manufacture a hinge
joint (a), consisting of two movable parts (b-d), without the need for manual
assembly. We build the assembled model layer-by-layer (e-k), filling the model
volume with build (in gray) and voids with support material (in blue). As long

as we keep a minimal tolerance between movable parts, the support material
can be removed, resulting in a fully functional mechanical hinge.
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An algorithm must be seen to be believed.

Donald Knuth

Capturing Deformation Behavior

In this chapter, we introduce our data-driven representation and modeling tech-
nique for simulating non-linear, heterogeneous materials and soft tissue. Our ap-
proach simplifies the construction of convincing deformable models by avoiding
complex selection and tuning of physical material parameters, yet retaining the

richness of non-linear heterogeneous behavior (compare with Figure 4.0.1).
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Figure 4.0.1: Modeling Deformation Behavior (from left to right): Force-
and-deformation capture of a non-linear heterogeneous pillow; synthesized defor-
mation with fitted material parameters; and interactive deformation synthesized
with our data-driven modeling technique.

After further motivating the need for a data-driven material representation in
Section 4.1, we formally introduce our deformable model in Section 4.2. There-
upon, we discuss how we estimate model parameters from a set of example de-
formations (Section 4.3), acquired using a hand-held measurement system (Sec-
tion 4.4). We present the results of our approach for several non-linear materials
and biological soft tissue, with accurate agreement of our model to the measured
data in Section 4.5, and conclude with a discussion and summary (Sections 4.6
and 4.7). We will build upon the here presented data-driven material model in our

physical reproduction and fabrication work, discussed in the next chapter.

4.1 INTRODUCTION

Recent years have witnessed significant progress of physically-based deforma-
tion models. Numerous researchers have combined Newtonian mechanics, con-
tinuum mechanics, numerical computation and computer graphics, providing a
powerful toolkit for physically-based deformations and stunning simulations, with

application in feature films, video games, and virtual surgery, among others.
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However, achieving realistic deformations of a complex behavior requires care-
ful choices for material models and their parameters. Many real-world objects
consist of heterogeneous materials, requiring spatially-varying material parameters
such as, e.g,, Young’s modulus and Poisson’s ratio. Setting them is a difficult and
time-consuming process. Even more challenging is the problem of material non-
linearities. Most materials, for example rubber or biological soft tissue, show non-
linear constitutive behavior, i.e., anon-linear relationship between stress and strain.
Despite the wide variety of non-linear constitutive models in the literature, such as
the popular hyperelastic Neo-Hookean and Mooney-Rivlin models [ Ogden 1997],
material modeling is still an active research area in material science. Nonetheless,
non-linear physics equations are often simplified approximations to real material
behavior, and choosing the appropriate model as well as tuning its parameters are
extremely complex tasks.

Our technique employs finite element methods and exploits a set of measured
example deformations of real-world objects, thereby avoiding complex selection
of material parameters. Refer to Figure 4.1.1: we transfer every measured exam-
ple deformation into a local element-wise strain space, and represent this exam-
ple deformation as a locally linear sample of the material’s stress-strain relation.
We then model the full non-linear behavior by interpolating the material samples
in strain space using radial basis functions (RBFs). Finally, a simple elastostatic
finite-element simulation of the non-linearly interpolated material samples based
onincremental loading allows for efficient computation of rich non-linear material

simulations.
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Figure 4.1.1: Acquiring and Modeling Non-Linear Quasi-Static Deforma-
tion Behavior (from left to right): An object is probed with a force sensor to
acquire several example deformations, the applied force direction, and the force
magnitude. For every measurement, we estimate its stress-strain relationship
and represent it as a sample in strain space. During runtime, we interpolate
these samples in strain space using radial basis functions (RBFs) to synthesize
deformations for novel force inputs.

Earlier work in graphics and robotics also proposed acquisition-based model
fitting as a means for obtaining deformable object representations [Pai et al. 2001;
Lang et al. 2002; Schoner et al. 2004], but was limited to linear material models
with global support. In contrast, our work is the first to represent complex non-
linear heterogeneous materials through spatially-varying non-linear interpolation of
local material properties. Together with our hand-held system for deformation
capture from Section 4.4, our modeling pipeline is also distinct for its simplicity.

We present an efficient and robust algorithm for fitting the local strain-space
material samples and demonstrate the effectiveness of our data-driven modeling
method for several non-linear materials and biological soft tissue. The combina-
tion of simplicity and efficiency, both in acquisition and computation, and the
high-expressiveness of the results make our technique applicable for interactive

applications in computer graphics and other fields.
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4.2 MODELING OF NON-LINEAR MATERIALS

In this section, we describe our representation of non-linear heterogeneous elas-
tic materials, and how this representation is used for modeling an object’s deforma-
tion behavior. We first give an overview of the representation, and then describe
how we parameterize the materials and how this parameterization extends from
the continuum setting to a finite element discretization. We also explain how we
support material non-linearities through interpolation of local linear models, and
finally we describe our algorithm for computing non-linear elastostatic deforma-

tions based on incremental loading.

4.2.1 OVERVIEW OF OUR APPROACH

In materials science, (one-dimensional) elasticity properties have long been de-
scribed through stress-strain curves. Inspired by this popular representation, we
opt for modeling three-dimensional elastic properties by sampling the stress-strain
function at various operating regimes and interpolating these samples in strain-
space (see Figure 4.1.1).

More specifically, we characterize each sample of the stress-strain function us-
ing a (local) linear constitutive model. Then, in order to capture material non-
linearity, we define the parameter values of the constitutive model at an arbitrary
operating point through scattered-data interpolation in strain-space. Moreover, in
order to capture material heterogeneity, we compute both the stress-strain samples

and the scattered-data interpolation in a spatially-varying manner. Figure 4.2.1
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Figure 4.2.1: Spatially-Varying, Strain-Dependent Young’s Modulus Two
examples of a deformed pillow with color-coded Young's modulus (‘blue’ is low,
‘red’ is high), which varies both as a function of location and the local strain.
Probe pressure was higher on the right.

shows example deformations with color-coded Young’s modulus, which varies both
as a function of the location and the local strain.

It is worth noting that our model can capture elasticity properties, but not plas-
ticity or viscosity, among others. Our model builds on FEM and linear elastic-
ity theory, and we refer the interested reader to books on the topic [Bathe 1995;

Hughes 2000].
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4.2.2 DISCRETIZATION AND PARAMETERIZATION

We use linear co-rotational FEM to locally represent a deformable object’s elas-
tic properties. In other words, given an object’s deformed configuration, we model
the stress-strain relationship with linear FEM. We capture non-linearity by vary-
ing the parameters of the stress-strain relationship as a function of the strain itself.
Given a displacement field u, the linear co-rotational FEM employs Cauchy’s linear
strain tensor £ (u) = 2 (Vu + (Vu) T) . Invariance of the strain under rotations is
obtained by extracting the rotational part of the deformation gradient through po-
lar decomposition, and then warping the stiffness matrix [ Miiller and Gross 2004].

Because both, the strain and stress tensors, are symmetric, we can represent

both as 6-vectors. Given the strain tensor, we construct the 6-vector as
€ = (Exx Eyy €2z Exy Exz Epz) 5 (4.1)
and similarly for the stress. The local linear material yields then a relationship
o(u) = Ec(u) (4.2)

between strain and stress. For each element (in our case, a tetrahedron), assuming
locally linear isotropic material, the 6 X 6 stress-strain relationship matrix E can

be represented by Young’s modulus E and Possion’s ratio v

E
E = m(G+vH), (4.3)
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with the two constant matrices

G = diag (1,1,1,0.5,0.5,0.5) (4.4)

and ~ _
—1 1 1 (o] (0] (o]
1 —1 1 (0] (o] (o]
1 1 —1 (o] (0] (o]
H= : (4.5)
(0] (] (o] —1 (0] (o]
(0] (o] (o] (0] —1 (o]
(0] (o] (o] (o] (0] —1

This parametrization is intuitive, where Poisson’s ratio v is unit-less and describes
material compressibility, while Young’s modulus E defines material elasticity. How-
ever, we employ an alternative parameterization (2, a) that allows us to describe
the stress-strain relationship as a linear function of the parameters [Becker and
Teschner 2007 ]:

E = AG + aH, (4.6)

with

E
A= EI] and a=2v. (4.7)

The parameter a is also known as Lamé’s first parameter in elasticity theory,
whereas 1 is not directly related to any elasticity constant. With the (1, a) param-
eterization, the stiffness matrix and the elastic forces become linear in the param-

eters. We exploit this property in our parameter fitting algorithm in Section 4.3.1.
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The per-element stiffness matrix can be written as

K, = 1.V.B!GB, + .V.B'HB,, (4.8)

where V, is the volume of the element (i.e., tetrahedron), and B, is a matrix depen-
dent on the initial position of the element’s nodes. The complete stiffness matrix is
obtained by assembling the warped per-element stiffness matrices R, K,RY, where
R, is the element’s rotation. By grouping all material parameters {1., a.} in one

vector p, the stiffness matrix is parameterized as K(p).

4.2.3 STRAIN-SPACE INTERPOLATION

We describe the non-linear material properties through scattered-data interpo-
lation of known local linear parameters in an element-wise manner. We obtain
these known local parameters from a set of example deformations, largely simpli-
fying an artist’s job of tuning material parameters for complex non-linear constitu-
tive models.

Let us assume a set of M known example measurements, each with a corre-
sponding element-wise strain vector¢; € R® and aparametervectorp; = (1;, a;)".
Recall that we use a rotationally-invariant strain by extracting the rotation of the
deformation gradient through polar decomposition [ Miiller and Gross 2004 ). Our
non-linear strain-dependent material p (¢) is formed by interpolating linear mate-
rial samples p; (¢;). At a given deformed configuration, the non-linear material
is represented by the corresponding linear material that achieves the same force-

displacement relationship. Note that we do not exploit linearization in the more
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Figure 4.2.2: Captured and Synthesized Deformations (Foam) (two left-
most columns): comparison of captured and synthesized deformations for a
foam block. (two right-most columns): examples of interactive deformations
produced by sliding a cylinder on top of the model.

traditional way of capturing the local slope of a non-linear function.
For each element, we define the stress-strain relationship through scattered-
data interpolation in the strain-space R° using radial basis functions (RBFs). The

element-wise function describing the material, p(¢) : R® — RR?, has the form

pe) = Zwi-¢(|\€—8il\), (4.9)

where ¢ is a scalar basis function, and w; € R* and ¢; are the weight and feature
vector for the 'th measurement, respectively. We employ the biharmonic RBF ker-
nel ¢ (r) = r. This globally supported kernel allows for smoother interpolation of
sparsely scattered example poses than locally supported kernels, and avoids diffi-
cult tuning of the support radius [Carr et al. 2001].

As a preprocess, we compute the RBF weights w;. This reduces to solving 2T

linear M X M systems for a deformable object with T elements due to the fact that
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the stress-strain relationship is an element-wise description of the material. This
also leads to scattered-data interpolation of the material parameters in a rather low-
dimensional R® domain. In contrast, interpolation of material properties is much
more complicated in earlier approaches based on linear models with global sup-
port [Pai et al. 2001] due to the extremely high dimensionality of the parameteri-

zation.

4.2.4 ErastostAaTIC FEM SIMULATION

We compute novel deformations using an elastostatic FEM formulation Ku =
F, where the force F includes, among others, the load produced by a contact probe.
To correctly capture the material’s non-linearity during the deformation, we apply
the load of the probe gradually, and solve the elastostatic FE problem for each load
increment. In other words, at each loading step we measure the current strain ¢,
we compute the material parameters p (¢) by means of the interpolation described
above, we formulate the elastostatic problem, and we solve it for the new defor-
mations. The incremental loading procedure ensures that the non-linearity of the
material is correctly captured during the complete deformation process, with the
material parameters depending on the strain at all times.

For contact handling, we compute a distance field for the rigid probe object
that produces the deformations. We test for collisions between points on the de-
formable object and the distance field and, upon collision, we compute the pen-
etration depth and direction. We then define a linear force field at each colliding

point and solve the FEM simulation through iterative quasi-static simulation. At
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each iteration of the quasi-static FEM simulation, we first compute the material
parameters for the current configuration based on the interpolation algorithm de-
scribed above. Then, given the stiffness matrix and the linear collision force field,
we define a quasi-static problem and solve for the new displacements. We compute

several iterations until an equilibrium is reached.

4.3 FITrING THE MATERIAL PARAMETERS

We now describe how we compute the actual material parameters for a given
object. This consists of two parts: first, estimating parameter values for each de-
formation example, and second, selecting a suitable basis from all the deformation

examples.

4.3.1 PARAMETER ESTIMATION ALGORITHM

In order to estimate a sample of the stress-strain relationship, we apply a known
input force to the object under study. For each captured deformation we can dis-
tinguish three different regions on the object’s surface: (i) the probing region,
with measured non-zero forces and measured displacements, (ii) the attached re-
gion, with unknown forces and zero displacements, and (iii) the free region, with
zero forces and measured displacements. We use X and F to denote the vectors
of known displacements and forces, respectively, at the points corresponding to
mesh nodes in the model.

Given measured displacements and forces, we compute spatially varying mate-
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rial parameters p as:

p = argmin > Ix(p. B) — %[> + 7[|Lp|* ¢ . (4.10)

where x;(p, F) denotes the position of a mesh node as a function of material pa-
rameters and the measured forces. The sparse Laplacian matrix L enforces spa-
tial smoothness of parameters. We employ the umbrella operator [Zhang 2004]
(Lp), = Z]. wi;(pi — p;j), where i and j refer to tetrahedron labels, and w; ; = 1iff
two tetrahedra share a vertex. This regularization is required to prevent overfitting
due to noise in the acquired data. This is also mathematically required to obtain a
well-posed problem because the number of parameters is always twice the num-
ber of tetrahedra, |p| = 2T, whereas the number of measured positions |x| = n
may be smaller, which would result in an underconstrained problem. We also con-
sidered scattered data interpolation of material parameters in object space as an
alternative for addressing the underconstrained problem, but it would be difficult
to decide where to place the samples for highly heterogeneous objects.

We use the Levenberg-Marquardt algorithm [Levenberg 1944] to iteratively
minimize the non-linear residual Equation 4.10. We derive the Jacobian matrix
in the Appendix A. Instead of defining the residual in terms of measured positions,
the error functional could also be described in terms of measured forces [ Becker
and Teschner 2007], yielding a linear optimization problem. However, our ob-
servations have shown that this approach is unstable when the force-displacement

relationship is not close to linear material behavior.

42



4.3.2 STRAIN-SPACE BASIS SELECTION

A material capture session consists of capturing N example deformations, from
which we obtain the training dataset of N parameter vectors for each element in the
mesh. However, this dataset may be rather large, and we are interested in selecting
a compact set of M basis parameter vectors for each element. Note that M need
not be the same for all elements.

We select the basis in the same greedy manner as proposed by Carretal. [2001].
We start by setting a parameter vector at zero strain with the average parameters
computed for very small-strain deformations. We then add the parameter vector
with largest error, until a given error tolerance is achieved. After each parameter

vector is added to the basis, we need to compute the RBF weights that best fit the

parameter vectors for all Nex- |

Validation error (mm)

ample deformations in a least-
squares manner, as described

in Equation 4.9. The inset fig-

ure on the right shows the evo-

lution of the fitting error for 0 5 10 15 20 25 30
Basis size

the foam block in Figure 4.2.2.  Figure 4.3.1: Evolution of Fitting Error

This error plot accumulates the error for all captured deformations, not only those

added to the basis. The error drops quickly after adding the second parameter vec-

tor to the basis because the first vector may not represent the average material be-

havior well. We will provide more details on the validation of our method in the

next section.
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(a) (b)

Figure 4.4.1: Trinocular Stereo Vision System Our trinocular stereo vision
system consists of three high-resolution cameras (indicated in red) and two to
three light sources (indicated in green). The cameras are arranged in a triangular
setup, which helps maximize visibility during capture of a contact interaction.
The light sources ensure uniform illumination during the acquisition.

4.4 DATA ACQUISITION

We developed a simple data acquisition system consisting of force probes and
a marker-based trinocular stereo system. Deformations are induced by physical
interaction with the object. We decided to use a marker-based system due to its

simplicity, robustness, and independence of the object’s surface properties.

4.4.1 TRINOCULAR STEREO VISION SYSTEM

Figure 4.4.1 shows our trinocular stereo vision system, consisting ofthree Canon

40D cameras that capture images at a resolution of 3888 X 2592. These cameras are

44



(b)

Figure 4.4.2: Contact Probe (a) Contact probe with integrated force sensor.
(b) From left to right: USB Interface Kit, Force Sensing Resistor (red circle),
Phidget Voltage Divider, and connection cable.

placed in a triangular configuration to minimize occlusions caused by the contact
probes during data acquisition. We built an external trigger device to synchronize
the three cameras, and use additional light sources to ensure uniform illumination
during the acquisition process. The surface displacement during static deforma-
tions is measured using a set of markers that we paint on the object’s visible sur-
face. Our system is capable of measuring viewpoint-registered marker positions to
an accuracy of < 1mm.

We built contact probes with arbitrary shapes and circular disks of different di-
ameters attached to the tip of a long screwdriver (see Figure 4.4.2). We estimate
the position and orientation of the contact probe using two markers on the white
shaft of the screwdriver. To measure the magnitude of the contact forces we use
a 0.2 inch Force Sensing Resistor (FSR) (Item S-20-1000-FS2) connected to a

Phidget Voltage Divider (Item S-so-P1121) and USB Interface Kit 8/8/8 (Item
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C-200-P1018) by Trossen Robotics. The force sensor’s read operation is synchro-

nized with the external camera trigger signal.

4.4.2 ESTIMATING DISPLACEMENTS

To process the acquired data, we first identify corresponding marker positions
in the captured images, then reconstruct their 3D locations. Thereafter, we register
the markers to a template mesh, recovering positions lost due to occlusions also.

For the extraction of markers from the three sets of frames, we use standard im-
age processing: per-color thresholding in the CIELab space, followed by morpho-
logical closing. 2D marker positions are then estimated by averaging locations of
pixels belonging to 8-connected components in the resulting binary images. This
procedure, even though simple, allows for a robust extraction of markers.

To reconstruct our markers in 3D, we rely on accurate depth and correspon-
dence estimation. To this end, we calibrate our trinocular system using Bouguet’s
toolbox [2006] and automatically establish marker correspondences within and
across the three different views using proximity measures.

Given a template mesh such as, e.g,, a face scan, we register the 3D marker loca-
tions using a quaternion-based formulation [Micheals and Boult 2000] of Horn’s
shape matching algorithm [1987]. While we avoid almost all marker occlusions
with our three-view system, we employ a linear shell-based formulation [Bickel
et al. 2007] with prescribed displacements (visible markers) as boundary con-
straints, minimizing surface stretching and bending to estimate displacements of

occluded markers.
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Figure 4.4.3: Sampling Deformation Behavior Our hand-held system enables
the non-invasive acquisition of force-displacement samples of facial tissue (top)
and physical objects (bottom).

Refer to Figure 4.4.3: Our system enables the non-invasive sampling of defor-
mation behaviors of a wide range of physical objects (bottom) and facial tissue
(top). Moreover, our hand-held probes facilitate the capture at arbitrary locations,

varying angles, and with custom contact shapes.

4.5 RESULTS

Model Evaluation: We have evaluated the quality of our material capture and

modeling technique on several real-world objects, including two foam blocks, a
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Figure 4.5.1: Modeled vs. Real Deformations Comparing real (top) and
modeled (bottom) deformations with a different contact probe than the one
used during the data acquisition phase.

heterogeneous soft pillow, and a human face.

Figure 4.2.2 shows a foam block with homogeneous material. We acquired 48
deformation examples, well distributed over the foam to induce deformations in
all1, 805 tetrahedra of our model. We then constructed the non-linear material rep-
resentation, with bases of 8 samples per tetrahedron on average, using the proce-
dure in Section 4.3.1. Even though the object is homogeneous, it should be noted
that the material parameters that were estimated for each input example are non-
homogeneous due to non-linearities in the stress-strain relationship. The average
fitting error for the captured deformations is less than 1 mm (see inset figure in
Section 4.3.2). Figure 4.2.2 shows synthesized deformations produced with our
technique using a probe with a larger, different contact area than the probe used
for data acquisition.

To compare our model to a uniform linear co-rotational model we use the ho-
mogeneous foam shown in Figures 4.5.1 and 4.5.2. We captured 12 deformation

examples with the probe near the center of the block and modeled the object with
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—— measured —ours — linear co-rotational

Figure 4.5.2: Linear Co-Rotational vs. Our Method Comparison of defor-
mations using our method vs. an average-fit linear co-rotational model.

3, 240 tetrahedra. We computed an average-fit linear co-rotational model that best
approximates all the input deformations. As shown in Figure 4.5.2, our model
(blue) accurately captures the hyperelastic behavior of the foam, while the average-
fitlinear co-rotational model (green) underestimates the deformation at small force
values and overestimates it at large ones. In addition, the linear co-rotational model
suffers from element inversion for large forces.

Our model is of course not confined to the contact shapes that were used dur-
ing data acquisition. Figure 4.5.1 shows a side-by-side comparison of our model
(bottom) to real deformations (top) using a different contact probe than the cir-
cular one we used for data acquisition. We captured the applied force with the new
contact probe, and then distribute it uniformly in the simulated setting. The figure
shows high correspondence between the real and simulated scenarios. We refer

the reader to the accompanying video for an animated side-by-side comparison.
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To evaluate the sensitivity of our capture and
modeling approach to measurement noise we cre-
ated example deformations of a virtual block with

three layers of user-defined non-linear materials

(see inset figure). We then evaluated the accuracy
in matching these deformations with our model Figure 4.5.3: Virtual Block
under different levels of noise in the input data. Specifically, we applied Gaussian
noise with a variance of 10%, 20% and 30% to the input displacements and then
measured the L* error for all deformations and error levels. On average, we obtain
an error of 0.3% of the maximum displacement for the case without error, and
2.1%, 3.1% and 4.4% for the cases with 10%, 20% and 30% input noise, respec-
tively.

Figure 4.5.4 shows a pillow object with heterogeneous behavior even in its rest
state. The screenshots compare the captured deformations with the deformations
of the 1, 691 tetrahedra model synthesized with our algorithm. The figure also
shows screenshots of deformations at interactive frame rates of about 10 Hz on
a standard PC.

Facial Deformation: We have also applied our data-driven capture and mod-
eling technique to the challenging task of facial deformations, as shown in Fig-
ure 4.5.5. We have modeled the facial tissue with a single layer of 8, 261 tetrahedra
that are attached to a low-resolution skull model. To model the sliding contacts
between the tissue and the skull we use the same contact handling as for the probe

object (see Section 4.2.4). Given the deformation of the tetrahedral mesh, we
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Figure 4.5.4: Captured and Synthesized Deformations (Pillow) (two left-
most columns): comparisons of captured and synthesized deformations for a
heterogeneous non-linear pillow. (right column): interactive deformations of
the model produced by pushing (top) and pulling (bottom).

compute the deformation of a high-resolution triangle mesh using a smooth em-
bedding based on moving least squares interpolation like Kaufmann et al. [2008].

Note that our face model does not correctly capture all types of deformations
because we use a model with closed lips, and all the deformation examples in the
training dataset were captured with relaxed muscles and closed jaw. Nevertheless,
the model is able to produce compelling deformations even without anatomically

correct modeling of the musculoskeletal structure of the face.

4.6 LIMITATIONS AND FUTURE DIRECTIONS

Our work suggests a highly innovative approach to non-linear material mod-
eling, but it also suffers from limitations. Due to its formulation, our technique

is currently limited to capturing elastic properties. A fully dynamic simulation of
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Figure 4.5.5: Captured and Synthesized Deformations (Face) (left): cap-
ture of facial deformations; (middle): synthesized deformations for the captured
examples; (right): frames of an animation with a cylindrical probe pressing on
the cheek.
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materials would require capturing other properties such as viscosity and plasticity.
One interesting conclusion of our work is that it is often possible to obtain com-
pelling surface deformations with a volumetric meshing unaware of an object’s ac-
tual volumetric structure. This is of course not valid for all situations. For example,
our face model could be greatly enhanced with accurate lip contact and jaw motion
models.

There are several aspects of our model that deserve further exploration. One
of them is its ability for capturing anisotropic behavior. The underlying linear
co-rotational material model that we use for representing deformation samples
can only capture isotropic behavior, but deformation samples with the same total
strain but in different directions will lead to anisotropic behavior. In other words,
we locally model the material isotropic in strain space, yet strain-space interpola-
tion of material parameters provides global anisotropic behavior. It is worth ex-
ploring to what extent our approach captures anisotropy.

Another aspect that deserves further analysis is the formulation of the quasi-
static deformation problem. Given a certain strain, we employ a local linear co-
rotational model to formulate a quasi-static deformation problem. However, our
model is not strictly a local linearization, which means that the stiffness matrix of
the quasi-static deformation problem does not employ correct force derivatives.
At the same time, our linear model is more robust than a model obtained by local
differentiation and avoids non-passive regimes.

Similar to other approaches, our parameter fitting algorithm is formulated as a

minimization problem and may end up in a local minimum. In fact, we have iden-

S3



tified fitting error as the major source of potential inaccuracies in the deformation
synthesis. Sometimes, fitting error also appears because we limit Poisson’s ratio to
physically valid values during the minimization. Robust parameter identification
is still an open research problem in material science, and some recent approaches
explore alternative solutions including particle filters [Burion et al. 2008 ]. Multi-
resolution fitting may be another way of increasing robustness.

Finally, using a more efficient parameter estimation algorithm for material fit-
ting, one could evaluate the need for further samples of the stress-strain relation-

ship online, and determine the optimal probing patterns on the fly.

4.7 SUMMARY

We have presented a novel data-driven method for modeling non-linear hetero-
geneous materials. The major practical contribution of our work is the ability to
model rich non-linear deformations in a very simple manner, without the com-
plex task of carefully choosing material models and parameters. Instead, our data-
driven method relies on a simple-to-build acquisition system (see Section 4.4), a
novel representation of the material through spatially-varying interpolation of fit-
ted linear models, and a simple deformation synthesis method.

In the next chapter, we will use our data-driven deformation model to represent
our homogeneous base materials, a layered combination of which allow us to re-
produce and fabricate a desired deformation behavior. Assuming homogeneity,
we significantly increase the robustness of our fitting process, by fitting a single

non-linear model to all acquired force-displacement pairs.

54



Ifyou come to a fork in a road, take it.

Yogi Berra

Fabricating Deformation Behavior

In this chapter, we introduce a data-driven process for fabricating a desired de-
formation behavior using multi-material AM devices. Our process takes example
deformations, either acquired using an automated measurement systems, or sam-
pled from a virtual deformation simulator, as input. Given the input, we then esti-

mate an approximate model consisting of a layered set of base materials, ready for
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Figure 5.0.1: Physically Replicating Deformation Behavior Given the defor-
mation behavior of real world objects in form of measured example deformations,
we estimate layered approximate models, tailored for 3D manufacturing using
multi-material AM technologies. Our replicas’ deformation properties are in high
agreement with those of the input.

3D printing (see Figure 5.0.1). To represent these base materials, we adopt our
data-driven deformable model from the previous chapter.

Automating the fabrication of virtual and real deformation behavior is of high
practical relevance as we point out in Section 5.1. We then describe the adjust-
ments to our data-driven model to represent our homogeneous base materials.
The adjusted model has fewer parameters than the original (Chapter 4), leading
to an increase in fitting robustness (Section 5.4). Thereafter, we introduce our
optimization that identifies the best combination of stacked layers of base materi-
als in Section 5.5. We demonstrate our complete process by physically replicating

complex heterogeneous materials in Section 5.8.

5.1 INTRODUCTION

Elastically deforming objects are omnipresent in our everyday live (e.g, our shoes,
or chair cushions) and widely used in physics-based animation to increase realism.

Yet, we lack algorithms for their automated fabrication using multi-material AM

56



devices. As mentioned in Chapter 3, these devices are capable of manufacturing a
variety of soft and hard materials with complex internal structures, making it pos-
sible to fabricate complex 3D objects with aggregate materials quickly, inexpen-
sively, and with high accuracy. Despite these technical advances, we do not have
tools at our disposal that aid us with the design of such multi-material content.
We present a goal-based design process that, provided with a set of example de-
formations, physically reproduces the sampled behavior using a layered approx-
imate model and a multi-material AM device (compare with Figure 5.1.1). For
validation purposes, we compare probes of real world objects and their replica,
measured with our automated acquisition system (Section 5.6). However, we are
by no means restricted to define a desired behavior using acquired samples. Probes
can also be taken from simulations of deformable models, enabling the fabrication

of digital content and, hence, providing us with a design interface.

5.2 OVERVIEW

We have collected a database of base materials, fabricated using a Connex 500
multi-material 3D printer, but also a variety of standard foams, gels, and rubbers
purchased from the McMaster-Carr catalogue. These materials span a wide gamut
of different deformations: from very soft to very hard and rigid (see Section 5.8).
We automatically measure deformations of these base materials subject to different
forces using our robotic system (Section 5.6).

Next, we represent our base materials using a data-driven non-linear stress-strain

57



Input Goal-driven Design Fabrication

°oee -~ |/

Base materials Material Library

Search &

Simulation Model

VA

Target material

{} Measuring &Fitting
{} Printing

Validation

Figure 5.1.1: Goal-Driven Design of Deformable Materials

relationship in a Finite Element Method (FEM) (Sections 5.3 and 5.4). This com-
pact representation allows us to predict deformations of thicker or thinner versions
of the base material samples. More importantly, we show that we can accurately
predict deformations of arbitrary combinations of stacked base materials.

As the last step, we design composite materials that best match a desired defor-
mation behavior using our combinatorial optimization algorithm (Section 5.5).
In order to simplify the material design process, we introduce a goal-based opti-
mization approach. The user specifies a material by providing example deforma-
tions and their corresponding forces, and our algorithm automatically computes
the best-matching composite material. Because the configuration space is com-

binatorial and exponentially large, we use an efficient search strategy that prunes
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away states that yield poor matches to the desired material specifications.

We validate the simulation and material model by fabricating a number of dif-
ferent composite materials, measuring their deformations subject to a variety of
different forces and comparing these measurements to the results of the simula-

tion. We describe the results in Section 5.8.

5.3 NON-LINEAR MATERIAL MODEL

All our base materials exhibit a non-linear hyper-elastic stress-strain behaviour,
as demonstrated by the measured force-displacement curves in Figure 5.7.1. Most
of our base materials consist of complex structures which influences the deforma-
tion behavior significantly (see Figure 5.7. 3). We use our data-driven approach
from Chapter 4 to represent such non-linear behavior. Recall that our model cap-
tures such non-linearities by a non-linear interpolation of locally linear material
properties. We obtain these linear properties from example deformations, probed
from base materials in this context.

For linear materials, Hooke’s generalized law

o(u) = E<(u) (5.1)

describes the relation between strain and stress with a 6 X 6 material-dependent
matrix E.
The key for achieving the non-linear behavior of our base materials is to define

the matrix E as a function of local strain £(u). And, because we can typically pa-
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rameterize E with fewer parameters p, we define these parameters to non-linearly
depend on £(u), resulting in a non-linear material representation E(p(u)). Al-
though this approach holds for general anisotropic behaviour, we describe subse-
quently the parameters p for two types of materials that are most relevant in prac-
tice: isotropic and transversely isotropic ones. We defer the discussion of trans-

versely isotropic material to Section 5.7.

§5.3.1 ISOTROPIC MATERIALS

For homogeneous linear isotropic materials, the matrix E can be represented
by the two Lamé parameters A and y, hence, we have p = (2, y). Using Lamé’s

parameters, the stress and strain tensors are related as

o(u) = 2pe(u) + Atr(e(u))I, (5.2)

from which the matrix E can be derived [Bathe 1995].

In homogeneous linear isotropic materials, the strain is well captured by the
three invariants of the symmetric strain tensor I, (¢), I, (), I, (¢). These invariants
do not change under rotation of the coordinate system. Using the invariants to
represent the strain, our non-linear material model can be considered as a 2-valued

function in a 3-dimensional domain, p(I,, I,, I,) : R® — R

§5.3.2 NON-LINEAR INTERPOLATION OF MATERIAL PROPERTIES

Given a base material, we describe its non-linear stress-strain relation through

a small set of P parameter vectors, {p;}, corresponding to different strain values,
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{e:}. Then, using the (parameter, strain) pairs as centers of Radial Basis Functions
(RBF), we define the complete material behavior through RBF interpolation (see

Chapter 4):
p(e) = Zwi'¢(||5—€fl|) : (5:3)

Since our base materials are homogeneous, a single set of parameter vectors is
sufficient to describe the behavior of an arbitrary object consisting of a single base
material. This reduces the number of parameters of a base material to |p| - P, where
|p| is the cardinality of the parameter vector (2 for isotropic materials, and 5 for
transversely isotropic ones). In our examples, the number of RBF centers is typi-
cally between P = 6 for the isotropic foams and P = 12 for printed materials with
complex internal microstructure. Computing the RBF interpolation based on the
local strain in a spatially-varying manner allows us to simulate different non-linear
behavior in different regions of an object.

In order to simulate the behavior of composite objects made of base materials,
we follow the quasi-static FEM approach described earlier in Section 4.2.4: givena
simulation state, we compute the strain of all elements and perform a per-element
computation of the parameter vector according to 5.3. We then recompute the

per-element stiffness matrices, and perform a new step of the FEM simulation.

5.4 FITTrING BASE MATERIALS

We estimate the properties of base materials such that simulated deformations

match besta set of input examples. In our fitting process, we compute the RBF cen-
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ters {¢;} (ie., strain values used as data points), and their corresponding weights
w; (see Equation 5.3). Assuming the P RBF centers to be known, we compute
the RBF weights w as follows: given a set of example deformations of measured
displacements {x;} and corresponding forces F;, we minimize the error in the dis-

placement using

W = argmin ZHX,-(p,F,-)—i,-H’ : (5.4)

To define the RBF centers, we first fit a homogeneous linear material to obtain
a constant set of material parameters. Using these parameters, we run FEM simu-
lations for all measurements, and record strain values. We select the RBF centers
by sampling the strain space with P points that cover the range of measured values
well. Using these RBF centers, we can fit the material parameters but run several
iterations to obtain a better coverage of the strain space.

There are two main differences between our material fitting strategy and the
one proposed earlier in Section 4.3.1. First, since the base materials are homo-
geneous, the RBF weights are not spatially-varying, and the size of the problem
reduces to |p| - P. Second, the objective function is defined by grouping the mea-
sured displacements of all example deformations at once. These two differences
lead to improved robustness and fitting accuracy.

As before, we use Levenberg-Marquardt optimization and compute the Jaco-
bians as described in Appendix A. However, an unconstrained minimization may

lead to material parameters not physically feasible, causing instabilities during FEM
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simulations. In case of isotropic materials, we bound Lamé’s parameters by com-
puting the corresponding Young’s modulus and Poisson’s ratio, then projecting
them to physically feasible ones. For transversely isotropic materials, we ensure
that the stiffness matrix stays positive definite using the technique by Rebonato
and Jackel [1999].

Our measured forces F are normal to the surface. However, the contact area be-
low the force probe also undergoes small tangential forces during acquisition, and
we found that these missing forces cause fitting errors. Hence, we compute these
missing tangential forces by constraining probed surface points to fall together.
We then reintroduce these tangential forces as known forces, leading to increased
quality of our fitting. We evaluate our fitting by reporting errors when comparing

simulated base materials to measurements in Section 5.8.

5.5 GOAL-DRIVEN MATERIAL DESIGN

Our goal-based material design approach approximates a desired deformation
behavior with a composite of base materials. We now describe the optimization
algorithm to obtain composite structures made of a set of base materials. Our
algorithm receives as input a description of the object surface, examples of de-
sired force-displacement pairs, and a set of base materials with known deformation

properties, expressed with our non-linear material model.
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5.5.1 PROBLEM STATEMENT

We formulate the design process as an optimization problem where we need to
choose the distribution of M possible base materials inside the fabricated object
such that it matches the input force-displacement samples.

We discretize the problem by dividing the desired object shape in a set of N
regular cells, each made of a uniform base material. The desired inhomogeneity and
possible anisotropy of the final object are achieved by the appropriate distribution
of base materials. For each cell, one may choose a single material from M possible
base materials. We call a certain choice of base materials and their distribution
a design. We denote each design as a vector m = (m,, m,, ... my), where m; is
an integer value that indicates the type of base material in the i’ cell out of the
{m;,1 < j < M} possible base materials.

In order to test each design, we assign its particular material choices to the cells
of the object, simulate the object with the quasi-static FEM approach from Sec-
tion 5.3 using the user-specified force profiles, and measure the error in surface
displacements. The surface displacements of all input examples are grouped in
one large vector x. Given the targeted displacements X, the displacement error of a
design is simply ||x — x||. Finding the optimal design with minimal displacement

error is an exponential problem, with MY to-be-tested designs.
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Figure 5.5.1: Branch-and-Bound with Clustering The root of the tree shows
the two materials A and B for the first out of three cells. Each level of the tree
spans the possible options for the subsequent cells. Sub-optimal branches of the
tree can be culled, and similar deformations can be clustered.
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5.5.2 BRANCH-AND-BOUND WITH CLUSTERING

The major problem when solving such a design optimization is the non-convexity
of the design space and therefore the risk of ending up with a locally optimal so-
lution if only the local neighborhood is taken into account [Lund and Stegmann
2005 ]. To solve this discrete optimization problem we use a decision tree such that
at each level of the tree we span the options for one cell in the design. The root of
the tree has M children, where each child represents one of the material choices
for the first cell, while the other N — 1 remain undecided. Figure 5.5.1 shows the
decision tree for an object with three cells and two possible material choices.

Entire branches of the decision tree can be culled away using a branch-and-
bound algorithm [Land and Doig 1960]. During tree traversal, we store the mini-
mum error d,,;, for the designs tested so far. When a new node of the tree is visited,
i.e, a new cell is refined, we use this minimum error to cull (if possible) the com-
plete subtree rooted at the node.

Given the breadth of the tree, branch culling still leads to an intractable number
of possible designs. However, often several designs produce similar deformation
results. Hence, we cluster these nodes together to limit the breadth of the decision

tree at every level.

5.5.3 BOUND ESTIMATION

We define {m}, = (m,,m,,...mj, x...x) to denote the designs rooted at a
node a and located at level I. The first [ cells are already determined along this

branch, while the rest are still undecided (denoted by x). We estimate a bound
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on the deformations produced by {m}, by considering the cases where the unde-
cided cells are uniform.

In other words, we estimate bounds by filling the undecided cells with each base
material m;, computing the resulting deformation for all input examples x;, and
bounding the result of the M cases as [xj] . We use axis-aligned bounding boxes in
high dimensions as bounds, i.e., maximum and minimum values for each dimen-
sion of the resulting displacement vectors. We cull the branch rooted at node a if
dist(X, [x;]) < dpin- When new designs are tested we update d,p,;, appropriately.

Due to material non-linearities and the existence of non-monotonic functions
along the simulation process, our bound estimation is not conservative. While
efficient methods for bounding displacements in linear FEM settings exist [Neu-
maier and Pownuk 2007], practical bounds for the non-linear setting are still an
open research problem. However, the uniform blocks can be regarded as extreme
behaviors (from very soft to very hard), and we can expect that combinations of
these materials will produce in-between deformations, in which case our bound

estimation will not cull any optimal designs.

5.5.4 CLUSTERING STRATEGY

We traverse the decision tree in a breadth-first manner, and hence a parent level
with n nodes produces another level with # - M nodes. Evaluating bounds on this
new level requires the computation of n - M* designs. In order to limit the breadth
of the tree, and thereby the total number of designs that need testing, we cluster

nodes at every level before applying the split operation.
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We cluster the n nodes at a level into K clusters using K-means clustering, using
as distance dist(a, b) between two nodes the sum of squared example displace-
ment differences, evaluated for the pairwise uniform descendants. Formally, the

distance metric is:

M
dist(a,b) = Y ||x(myg, . .. myg, iy, ..., 1) — (5.5)
j

X(Map, . .. mp, my, .. ) ||
The cluster representative is the node that is closest to the centroid of the cluster.
Every time we split a level we need to test only KM?* designs. Since the height of
the tree is equal to the number of cells N, our clustering strategy limits the total
number of design evaluations to roughly O(KM*N). Note that the actual number
of tested designs is smaller due to bound-based culling. In our implementation, we
usually use K = 20 clusters. This clustering approach comes at the cost of missing

the global optimal solution.

5.6 AUTOMATED DEFORMATION CAPTURE

To acquire surface deformations of objects with a wide range of material prop-
erties, we built an automatic measurement system that is able to acquire many dif-
ferent materials with varying geometry and surface properties. We use our system
to probe base material samples, composites of base materials for model validation,

and complex real-world objects together with their reproductions.
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Figure 5.6.1: Automated Deformation Capture Our automated system for
measuring material deformations consists of cameras (blue), a robot arm (green),
and a force sensor attached to a stick (red). A sample material block is shown
in pink and the inset shows a screen shot of our processing software.
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Our measurement setup (Figure 5.6.1) consists of a four DOF robot arm (from
MicroProto Systems), a six-axis force-torque sensor (Nano 25 from ATI), and a
vision subsystem to track surface displacements. The resolution of the robot arm
is 0.003 mm and its repeatability is 0.01 mm. The maximum range of the force
sensor is 125 N with a resolution of 1/24 N. The vision subsystem consists of seven
high-resolution Basler Pilot cameras running at a resolution of 1600 x 1200 pixels.
We set up the calibrated cameras [Svoboda et al. 2005 ] on a half-circle above the
robot arm to minimize occlusions and added diffuse lighting.

We paint regular, dotted grids with 3 mm spacing on the objects’ surfaces, then
extract these markers from the captured frames using a scale and affine invariant
blob detector [ Mikolajczyk and Schmid 2004] and track them. For each acquisi-
tion, we use 30 to 200 deformation steps, depending on the stiffness of the material.
The maximal forces are in the range of 35 to 50 N. Finally, the tracked markers and

corresponding forces are registered to a surface mesh.

5.7 REPRESENTING BASE MATERIALS

§.7.1 ISOTROPIC BASE MATERIALS

To print 3D deformable objects and a set of base materials we use the OBJET
Connex 500 multi-material printer. In each run, the printer can use up to two dif-
ferent materials, e.g., Vero White (rigid) and Tango Black Plus (soft). As discussed
in an earlier chapter, the printer can also mix these two materials in predefined

proportions, producing isotropic materials of intermediate stiffness. We mainly
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Figure 5.7.1: Force-Displacement Curves of Measured Materials When
plotting displacements (horizontal axis) against applied forces (vertical axis), we
unveil the high non-linearity inherent in most of our measured materials.

use Tango Black Plus (TBP) and a mixed material called digital material with shore
50 (DMso0). In addition to these two isotropic base materials we measured eight
isotropic materials from the McMaster-Carr online catalog, including rubbers and
foams. Figure 5.7.1 shows a plot of surface displacement as a function of applied

force for a subset of measured materials.

§.7.2 TRANSVERSELY ISOTROPIC BASE MATERIALS

In order to model and fabricate materials with even larger deformation gamut

(in particular, materials that are much softer) we introduce internal
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void spaces into the printed objects.
Unfortunately, the current printer only
allows printing void spaces that span

the entire object along the z-axis.

We use tubes of four different right).

4

zontal plane, perpendicular to the tube ~ Figure 5.7.2: Transverse Isotropy

These objects are isotropic in the hori-

direction. The material can be regarded as transversely isotropic.

For such materials, the matrix E can be represented as:

Eun Ei2 Ei3 o o o)
Ei2 Eu Ei13 o o o
Ei13 E13 E33 o o o
E= . (5.6)
o o o E44 o o
o o o o E44 o
o o o o o (Eu1—E12) 7

2

with five degrees-of-freedom, {E11, E12, E13, E33, E44 }. Our non-linear material
model can then be considered as a five-valued function in a six-dimensional strain
domain, p(g) : R® — RS.

All base materials were printed as 4 cm (width) X s cm (length) X 2.5 cm
(height) blocks. The deformations (side view) of some of these materials under

15 Newtons force are shown in Figure 5.7.3.
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Base Materials Side view of several base materials during data

3
acquisition. The magnitude of the applied force is 15 Newton in all views.

Figure 5.7
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5.8 VALIDATION AND RESULTS

§.8.1 VALIDATION OF THE FITTING

Our material model represents elastic behavior of the base materials at the meso-
scopic level very well. In Figure 5.8.1 we compare images from our measurement
system, the reconstructed deformed surface, and the corresponding simulation us-
ing FEM. We also show an error plot between the measured surface and the sim-
ulation. Note that the error is only evaluated at the surface marker positions and
then interpolated for visualization purposes. Furthermore, the error evaluation is
dependent on the accuracy of the measurement system which is in the range of
< 1mm. Very small pitching effects at the microscale of the material cannot be
tracked by our system and are therefore missing in the error visualization. Refer
to our video for more results. For isotropic base materials we use six and for the
transversal isotropic materials 12 RBF centers, resulting in 12 and 60 parameters
for each base material, respectively. Fitting the material model takes two hours on
average but has to be performed only once. We also report the average, standard
deviation, and maximum errors for the materials under varying applied loads in

Table 5.8.1.
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Figure 5.8.1: Side-by-Side Comparison of Real and Simulated Materials
Deformation of an isotropic (left column) and transversely isotropic material
(right column), comparing acquisition (top row) with the simulation (middle
row) and the displacement error (bottom row).
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Displacement error (mm)
Material Force (N) | avg. ‘ std.dev ‘ max
1N 0.84 0.45 2.55
Foam 3N 1.72 1.00 6.74
(very soft) sN 2.04 | 0.88 5.70
sN 1.40 | 0.57 3.44
Foam 15N 1.06 0.36 2.46
(medium) 25N 1.33 | 0.90 5.19
10N 0.73 0.43 2.70
Foam 20N 0.94 0.40 2.71
(stiff) 30N 1.20 | 0.38 2.22
sN 2.14 0.68 4.47
Printed TBP1 10N 2.40 | 0.77 4.67
(soft) 20N 3.60 1.22 6.55
sN 0.69 0.26 1.44
Printed DMso2 15N 0.85 0.41 2.09
(medium) 25N 1.31 | 0.51 3.00
10N 0.68 0.22 1.15
Printed TBPs 20N 0.99 0.27 1.70
(stiff) 30N 1.30 | 0.311 2.61

Table 5.8.1: Error Evaluation of the Model We fitted parameters for var-
ious isotropic (soft/medium/hard foams) and transversely isotropic materials
(printed, with cylindrical hole structures) and evaluated the surface displace-
ment error under small, medium, and high force loads by comparing to measured
deformations of material blocks (size isotropic 5x5x2.5cm, printed 5x4x2.5cm).
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Figure 5.8.2: Validation of Composite Materials We assigned the material
properties obtained from two independent fits of base materials (DM501 and
DM502) to a composite, consisting of two layers. We then printed the composite
and compared the deformations of the real object (top row) to the simulation
(middle) under a load of 8 and 21 Newton. (bottom row): error visualization.
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5.8.2 VALIDATION OF THE STACKING

Next, we show that we can accurately predict the behavior of composite ma-
terials made from arbitrary combinations of base materials. We ran a number of
simulations for different composites and also fabricated those using the Connex
soo printer. Next, we measured the behavior of these composite materials and
compared them to their corresponding simulations. We report this validation for
a few example deformations and materials in Figure 5.8.2 and in our video. In the
composite example shown in Figure 5.8.2, we obtain average errors of1.98 mm and

2.16 mm under loads of 10 N and 20 N.

§.8.3 VALIDATION OF THE GOAL-BASED DESIGN

Next, we validate our goal-based design process. We first tested our process on
materials that we know we can reproduce. We picked a given combination of lay-
ers and their thicknesses. We then simulated this composite material and used its
deformations as the input to the search algorithm. We report the result of this
validation in Figure 5.8.3. Thereafter, we tested this strategy on 20 different ran-
domly chosen material designs (s layers, each with 9 different material choices
and s force-displacement pairs). Although our search is not guaranteed to find
the global optimum, it always found a very close solution (average RMS error of
0.067 mm). The optimization time is usually below one hour. To carry this val-
idation even further, we have fabricated these composites and remeasured their
properties. We show these results in Figure 5.8.3.

We also tried to approximate one of the foams with a combination of materials
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printed using the Connex 500. The obtained spatial combination and the error

evaluation are shown in Figure 5.8.4.

5.8.4 REPLICATING OBJECTS

We ran our complete replication process on several challenging real-world ob-
jects, including a pair of flip-flops, felt slippers and a heterogeneous leather stool.
We first 3D scanned each object using a Cyberware scanner. Thereupon, we ac-
quired their deformation behavior using our automated mesaurement system (Sec-
tion 5.6), followed by fitting corresponding material parameters. For the leather
stool, we segmented the volume into two areas, and approximated each of them as
a homogeneous material. Next, we used the goal-based design process to find the
best approximation of the material’s deformation properties using our base mate-
rials. For all results, we used between s and 10 force-displacement pairs. Finally,
we printed replicas of these objects using the multi-material printer. As we can be
seenin Figures 5.9.1 and 5.9.2 and the accompanying video, the replicas show very
similar behavior to the original objects. To further validate this approach, we show
force-displacement curves in Figures 5.9.1 and 5.9.2 for corresponding points on

replicas and originals.
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Figure 5.8.3: Validation of Goal-Based Design Algorithm We randomly
generate a set of material designs. We then simulate these designs and use their
simulated deformations as input to the goal-based design search algorithm. We
then compare the obtained designs of the search algorithm with the known
ground truth. The upper bar plot shows the RMS error. We also fabricated one
of those randomly generated designs and its corresponding search output and
compared their force-displacement curves.
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Figure 5.8.4: Fabricated Example of Goal-Based Design We ran our goal-
based design algorithm on a foam block's deformation behavior (upper left),
specified by s example deformations. The desired deformation behavior is ap-
proximated by finer scale materials obtained through combinatorial optimization,
and then fabricated using a 3D printer (upper right). The lower curve shows

the force-displacement relationship of used base materials, foam, and fabricated
approximation.

81



5.9 DISCUSSION

§5.9.1 LIMITATIONS AND FUTURE WORK

We believe that our system has many potential avenues for improvements and
future work. We predict that this process will be a template for many future sys-
tems that expand the range of simulated and fabricated material properties (such
as dynamic deformation properties or plasticity). More specifically, we plan to
extend our model to dynamic and plastic deformation behavior and improve our
measurement system such that it can acquire a wider range of deformation prop-
erties (e.g., material stretching and dynamic deformation measurements) or can
guarantee and incorporate prior physical knowledge, such as volume preservation.
Additionally, we plan to investigate strategies for optimally choosing the number
of degrees of freedom (RBF centers) of our material model, striking a balance be-
tween accuracy and overfitting. Furthermore, we would like to examine material
homogenization strategies [ Kharevych et al. 2009] to improve the speed of the
forward (simulation) step for non-linear materials. This improvement along with
more advanced search strategies could, in turn, speed up the inverse step, making

the design and fabrication of extremely complex heterogeneous materials feasible.

5.9.2 SPATIAL COMBINATIONS

Currently, we only print layers of different materials. However, we believe our
algorithm could be extended in a straightforward manner to arbitrary spatial com-

binations (e.g., voxels) of base materials. The decision tree could be directly ap-
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plied to 2D or 3D problems, by having a one-to-one mapping of layers in 1D to
voxels in 3D. Also, our pruning strategy (clustering and bounds) can be directly
translated to the 3D case. Our search algorithm linearly scales with the number of
layers or volume elements.

For current printers, the mechanical range of isotropic base materials without
any holes or tube structure is limited. The OBJET Connex 500 printer can mix
two different materials, and the material properties are restricted to the range be-
tween the two loaded materials. To significantly expand this range, we deliber-
ately decided to create tube-structured materials. Due to current physical printer
limitations, these void tube structures can only be printed along the z-axis of the
printer, otherwise they would get filled with structure material, which is difficult to
remove. Printing blocks or objects with isotropic hole structures (similar to Swiss
cheese) is currently not possible. This comes at the cost of requiring a transversely
isotropic material model.

Looking into the future, we predict that the next generation of 3D multi-material
printers will be able to use many more base materials with a wider range of mate-
rial properties and more complex internal structures. As the cost of these printers
decreases and their capabilities increase, we believe that our goal of personalized

design, modeling, simulation, and fabrication will become reality.
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Figure 5.9.1: Replicating Flip-Flops and Slippers Flip-flops (top row) and

slippers (lower row). The left column shows the original images, the middle

column the replicated flip-flop and slipper with the spatial combination of base

materials obtained by our goal-based optimization approach. Our replication

matches the deformation behaviour of the original well, as shown in the force

displacement plots (right column) for a corresponding point on the original and
replica. The dotted curves characterize the base materials.
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5.10 SUMMARY

We presented a complete process for measuring, designing, and fabricating ma-
terials with desired deformation behavior. Our model is able to represent and sim-
ulate the non-linear elastic deformation behavior of objects with complex internal
structures. To ensure high agreement between deformations of real materials and
their simulated behavior, we use a data-driven measurement process to estimate
non-linear stress-strain models for each material.

Furthermore, we show that a goal-based material design approach can approxi-
mate a desired global deformation behavior by finer scale materials through com-
binatorial optimization. By closing the loop between measurements, simulation,
goal-based material design, and 3D printing, we validate the complete pipeline and
show that close matches between simulated and fabricated objects are achievable.
We believe that our goal-based design is a significant step towards 3D hardcopying.

Our design approach also allows to fabricate any virtual deformable content as
long as we can sample displacement-force pairs. Hence, most physically-based de-
formable models commonly used in graphics and other fields can be fabricated
using our processing.

Next, we will fabricate animated characters from skinned meshes. In contrast
to our work presented in previous chapters, skinned meshes are non-physical de-
scriptors of deformable models. Non-physical content is particularly challenging
to fabricate because it is unclear how we best estimate models approximate the

given non-physical content.
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Figure 5.9.2: Replicating a Leather Stool The left column shows the original
object, the middle column a cross section of the replicated object and the spatial
combination of base materials. We segmented the stool into two regions, a stiff
region below the button (indicated in green) and the remaining softer region
(indicated in orange). We validated the deformation behaviour by comparing

the force displacement plots (right column) in the button region (orange) as
well as in the softer region (green).
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I'm obsessively detail-oriented.

Donald Knuth

Fabricating Articulated Characters from

Skinned Meshes

So far we automated the fabrication of deformable models that are physically
plausible. In this chapter, we propose a method for the fabrication of skinned

meshes, encoding deformation models that typically exhibit a highly non-physical
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behavior. Hence, our technique can be understood as a fabricator of solely digi-
tal content. Given such a skinned mesh, we estimate a fabricatable single-material
model that approximates the 3D kinematics of the corresponding virtual articu-
lated character in a piecewise linear manner.

After further motivating our work in Section 6.1 and outlining our method in
Section 6.2, we discuss manufacturing considerations, then detail on our articu-
lated model estimation in Section 6.4. We provide several demonstrations, manu-
factured as single assembled pieces using a 3D printer in Section 6.5, before con-

cluding with a discussion and summary in Section 6.6.

6.1 INTRODUCTION

Skinned characters are among the most widespread models in computer graph-
ics and have received tremendous attention in recent decades. Skilled artists have
years of experience in creating weighted associations between a hierarchical set of
bones (rig) and groups of vertices on the character’s mesh (skin). Content creation
systems, such as the one built into SPORE [Hecker et al. 2008], allow even naive
users to create sophisticated skinned characters.

Recently, online services such as Shapeways have become available, making per-
sonalized manufacturing on cutting edge AM technologies accessible to a broad
audience. Affordable desktop printers will soon take over, enabling people to fab-
ricate custom-made 3D models at home. However, animation software packages

such as Maya or Blender lack a “3D print button” to facilitate converting a vir-
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(d) (e) ()

Figure 6.1.1: Fabricating Articulated Characters Given a skinned mesh (a),
we estimate (b) a fabricatable articulated character with (c) internal joints of
hinge and ball-and-socket type. (d-f) Final 3D printed characters (transparent
material) have durable joints with a frictional design for character posing.

tual articulated model into a fabricatable format. While tools and services that
map static properties such as geometry and appearance exist, the articulated be-
havior—a key property of posable skinned models—remains unmapped.

In this chapter, we present a technique that estimates an articulated character
model suitable for manufacturing with AM technologies from a given skinned mesh
(see Figure 6.1.1 (a)). Our method is capable of generating posable models con-
sisting of a set of piecewise rigid pieces with non-overlapping, physically meaning-

ful ball-and-socket or hinge joint parts (Figure 6.1.1 (b,c)).
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Note that a direct mapping from virtual articulated to manufacturable, jointed
models does not exist. For starters, rig joints are close to physically meaning]ess as
they can move out of the deformed geometry as illustrated in Figure 6.1.2 left with
a rigged cylinder. Furthermore, because they are also not guaranteed to be em-
bedded in the character’s geometry in its rest pose, they are not a reliable estimate
for joint center placement. Also, while rig joints are zero-dimensional points, me-
chanical joints are volumetric entities that need to be large enough for structural
strength, and as such can potentially “collide” with each other if care is not taken
in the joint design process (see Figure 6.1.2 right). Our approach addresses these
concerns.

While our method is capable of automatically generating articulated models
with ball-and-socket joints set to default ranges, these 3-DOF (degrees of free-
dom) defaults may restrict the posing space of fabricated characters either too little

or too much. We therefore allow users to switch individual joints to hinge type (1-

Figure 6.1.2: Virtual Rig vs. Mechanical Joints: When animating a rigged
cylinder (left), we observe that the rig joints do not fall together with actual
rotation centers and move out of the deformed geometry. (right) If we maximize
the individual sizes of mechanical joints (and thus their strength), they could
collide (red).
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DOF) and to specify range parameters differing from defaults for both of our joint
designs. For all our demonstrations, user-intervention is limited to a subset of the
joints.

After first analyzing the mesh and skinning weights, we estimate proxy joint lo-
cations, and assign custom parametric models for volumetric joint geometry that
are consistent with any user-specified joint limits. We then proceed to optimize
joint parameters (location, size, etc.) to increase joint strength while avoiding
overlapping joint geometry. By augmenting our joint models with tiny bumps to
increase joint friction, our output models can be posed and will retain their con-
figuration (see Figure 6.1.1 (d-f)). Finally, the estimated joints are carved out of
the character mesh using CSG operations. Additional overviews of our approach
are given in Figure 6.2.1 and Section 6.2.

For completeness and to assure high quality of our output models, we approxi-
mate the characters’ surface appearance also. Because the resolution of the geom-
etry of many skinned characters is kept low for fast rendering, we estimate micro-
geometric detail from normal maps if available. Carving out joints from character
meshes also works on textured content. We demonstrate the applicability of our
approach on a number of examples (see Figures 6.1.1, 6.5.2, 6.5.3, 6.5.4).

We show that an analysis of skinning weights leads to a plausible segmentation
of the character’s geometry into rigid body parts. Furthermore, we present novel,
geometric approximate models of joint strength, that, together with our method
to avoid joint-joint collisions, ensure strong and functional joints in our output

models. Also, our collision resolution allows us to keep as much of the “fabricat-
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able” input articulation in our posable output models as possible. To the best of
our knowledge, we are the first to present a technique to automatically convert

skinned meshes into durable, articulated models.

6.2 QOVERVIEW

For articulated characters, we have to successfully map three components from
the virtual model to reality: two static properties, namely geometry and appear-
ance, and the model’s articulation that allows it to be posed. See Figure 6.2.1 for an

overview of our fabrication pipeline. Next, we identify the properties we use.

6.2.1 INPUT: SKINNED CHARACTERS

The input to our estimation process is a skinned character (see Figure 6.2.1 left).
The input geometry is specified as semi-organized set of oriented face tuples f € F
whose components f; index into a set of vertices v € V. Optionally, appearance is
specified with color information provided as diffuse texture, and micro-geometric
detail encoded in a normal map. As indicated in Figure 6.2.1 (d), our input mesh
could potentially consist of a set of individual, overlapping mesh components. By
repairing (removing duplicate vertices, resolving violations of manifoldness, etc.)
and unifying this set of components, we compute a manifold, closed surface mesh
(V£, Fr). Because this mesh fulfills the requirements of manufacturing, we call
it a fabrication mesh . Without loss of generality, we hereafter assume faces and

vertices to refer to entities of repaired meshes, and the faces to be triangles.
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The articulation behavior is specified by a LBS model wherein each vertex i in
Vis weighted to link | € L by a (nonnegative) skinning weight w;;, such that the

deformed vertex position is given by

v = Zwil T, v, (6.1)
I

where T are some unknown time-varying link transforms. Moreover, we require
the set of link correspondences L to have tree-structured connectivity defined by
a function P that maps every link | € L to its unique parent P(I). We also add an
index w ¢ L and denote the link  whose parent is P(r) = w the root node. Note
that such a LBS description is the lowest common denominator of practically all

articulated characters found in games.

6.2.2 PIPELINE PROCESS

Given the skinned input mesh, our method proceeds to estimate an articulated
model as follows (refer to Figure 6.2.1). In the joint estimation branch (lower part
in Figure 6.2.1) of our pipeline (see Section 6.4.1), we first analyze the skinning
weights and their link correspondences to segment the original geometry into an
approximate set of body parts (f). From this segmentation, we then derive a fil-
tered set of oriented joint locations (g) that consist of orientation vectors, and the
joint’s rotation centers that we place on an approximate medial axis representation
of the fabrication mesh (h).

The fabrication mesh F (e) together with the articulation data (g) is then fed

into our joint optimization procedure (i) where posable joints with maximal cross-
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sectional areas are being generated from corresponding oriented joint locations
together with any user-specified range constraints. Pairwise collisions between
generated joints are resolved while keeping the joints’ rotation centers fixed (see
Section 6.4.4). Overall, our mapping tries to keep as much of the input articula-
tion as possible, while also keeping the model structurally strong. The final set of
non-colliding, mechanical joints are then carved out of F using CSG (j) and we
get a ready-to-print, structurally strong, articulated model (k) consisting of a set
of piecewise-rigid parts that are jointed together with hinges, or balls and sockets.
The models are statically posable using a joint friction design discussed in Sec-
tion 6.4.3.

Optionally, the joint carving can be performed on a colored, high resolution fab-
rication mesh whose geometric detail is computed by inverting normal mapping

using the weighted least squares version of Nehab et al. [2005].
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Figure 6.2.1: Pipeline Overview: Given a skinned input mesh with (a) geom-
etry, (b) skinning weights whose link correspondences are organized in a single
rooted tree structure, and optional (c) diffuse texture and normal map, our ap-
proach estimates a (k) fabricatable 3D model as follows: (d) mesh components
are identified, and (e) fused into a single, closed surface we call the fabrication
mesh F. Joints are computed by (f) estimating a rigid link segmentation from
skinning weights, and (g) estimating proxy joint locations and filtering prob-
lematic joints. To optimize joint center placement, we use (h) an approximate
medial axis representation of F. (i) The parameters of volumetric joints with
optional user-specified range constraints are optimized for strength and to avoid
inter-joint collisions. (j) The joints are carved out of F using CSG operations.
The final 3D printout (l) is a posable reproduction of the virtual articulated
character.
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6.3 MANUFACTURING CONSIDERATIONS

Our posable output models are tailored to be fabricated on AM devices as single,

assembled pieces. To manufacture overhanging or assembled geometry like our

mechanical joints, layered approaches use some kind
of supporting structure as illustrated on the left in blue
and discussed earlier in Section 3.4. After printing,

this support material can either be blown (for powders),

Build Tray

broken, or washed off. To ensure that the individual, as-

Figure 6.3.1 sembled parts (in grey) are movable, and not fused dur-

ing printing, we ensure a device-dependent minimal distance d (in yellow) between
these pieces. Hence, we treat d as hard constraint when estimating our geometric
joint models in Section 6.4.2.

An important factor for manufacturability on AM devices is the models’ struc-
tural strength because it puts a limit on the feasibility of desired output dimensions
and largely affects the models’ durability. If substructures are too fine, they either
break off during fabrication, or when interacting with the final printouts.

When designing simple structures (e.g., trusses), civil engineers repeatedly iden-
tify their weakest link, and adjust its dimensions. Inspired by this basic analysis, we
seek to increase the articulated models’ overall strength by identifying and max-
imizing each of their mechanical joints’ critical cross-sectional areas. We reject
joints if their minimal cross-section falls below a technology imposed global, criti-

cal area threshold Ay;,,. While this heuristic does not ensure structural optimality,
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(a) (b) () (d) ()

Figure 6.4.1: Estimating Articulation Behavior: (a) Piecewise rigid segmen-
tation using skinning weights. Faces whose vertices belong to different segments,
are shown in black. (b) Transitions oriented from the root towards the leafs in
the link connectivity P, (c) degenerate, and (d) filtered transitions. (e) Final set
of joint locations on the scale axis transform of F.

it allows us to formulate our hinges and ball-and-sockets using parametric, geo-
metric models of joint strength (see Section 6.4.2). Note that, because our virtual
input characters might be nonphysical, e.g., cartoon characters, their correspond-
ing fabrication meshes could themselves have critical sections below Ay, as, e.g.,
in long and slim necks. While we do not improve the structural strength of our
input geometry, our scale-aware simplification (Chapter 7) or the technique by

Stava et al. [2012] could be used to further process our fabrication meshes.

6.4 ARTICULATED MODEL ESTIMATION

We now describe the estimation of oriented joint locations from the charac-
ter’s skin, and cast our hinges and ball-and-sockets as geometric models of joint

strength that are then optimized while avoiding joint-joint collisions.
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6.4.1 ESTIMATING R1GID PARTS AND JOINT LOCATIONS

To estimate oriented locations where mechanical joints are best placed (see Fig-
ure 6.4.1), we exploit the link correspondence P encoded in the skinning weights
wy and ignore the character’s rig. We observe that a segmentation of the charac-
ter’s input geometry (V, F) into piecewise rigid parts is naturally given by assign-
ing each vertex i to the link  with maximal weight max;c;, wy, as visualized in Fig-
ure 6.4.1 (a) with a unique hue per link.

Most LBS descriptors lack information about skeletal joint motion (as implic-
itly encoded in the link transform parts T; in Equation 6.1), and often include
rig joint locations for the characters’ rest pose only. Unlike skinning weights, rig
joint locations are not a reliable source for mechanical joint placement because
they are nonphysical, zero-dimensional points. Firstly, they are not guaranteed

' tobe embedded in the character’s geometry as demon-

- strated on the right for a spider’s mandible. Secondly,
rig joints typically do not fall together with actual ro-
tation centers during animations as the cylinder exam-
ple in Figure 6.1.2 left illustrates. Hence, it is better to
Figure 6.4.2 place joints at transitions of maximal link influence as
shown in black in Figure 6.4.1 (a). Such transitions are by default found in regions
where the model bends most during animations and where joints are natural.
After segmentation, we approximate each transition with a plane (compare with
Figure 6.4.3) as illustrated in Figure 6.4.1 (b) with gray disks. We first identify all

unique edges in (V, F) whose end vertices j and k have maximal link influences

98



l; = argmax,; wj and [y = argmax,_; wy with J; # l. Note that links /; and
I do not have to be direct neighbors in the tree-structured connectivity P even
though they usually are. We then partition this set of transition edges with respect

to matching ordered link-pairs (m, 0)

U kAW kDY (6.2)

(m,0)

withA := ((l, =m) A (I, =0)) V ((lk = m) A (I = 0)) and where link m is
closer (or equal) to the root than o. Note that in rare cases where transitions (m, o)
span over branches in P and where both links m and o have the same distance to
the root, the link order is ambiguous. Transition (,, I, ) in Figure 6.4.3 left provides
an instance of such a case as both links /, and I, have r as a parent. To resolve this
ambiguity, we randomly choose the link order (m, o). Alternatively, the user could
specify it. For each edge {j, k} in each transition (m, o) (see Figure 6.4.3 right), we

then compute a transition point pji

Wiy Wi, 1
L) Vj . Vi, (6-3)
Wi + Wi, Wi, T Wi,

with normalized maximal weights w; ; and wy j,, and, finally, linearly approximate
each transition by running Principal Component Analysis (PCA) on the set of cor-
responding transition points, resulting in a mean point p"™° and principle com-
ponents e, e;,, and e, , sorted by their variances A, < A, < A,. We call the
mean point transition center and the vector n(mo) — sey, , the transition’s orienta-

tion. Next, we consistently orient planes (choosing the sign s = =+1) wirt. the
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Figure 6.4.3: Estimating Transitions: (left) Skinned cylinder with root r and
three links (I, in red, I, in green, I, in blue) with their corresponding skinning
weights (bottom). The link connectivity P is defined by P(l,) = r, P(l,) = r,
P(l,) = 1,, and P(r) = w. The two transitions (I,,1,) and (I,,1,) together with
the final oriented transition planes pointing from the root towards the leaves
in P (top). (right) A transition edge (in gray) with corresponding transition
point (top) for transition (I,,1,). (right) From the transition points, and their
edges’ end vertices (in blue and green), we compute the transition's center and
orientation (in yellow, bottom).

hierarchical structure in P (from the root towards the leaves). While orientations
do not affect the DOFs of individual mechanical joints in the posable output mod-
els, it allows us to pack the volumetric joints more closely, hence to keep more of
the overall input articulation. We set s to 1if more of the edge end vertices v; (cor-
responding to the link m closer to the root, assuming /; = m) are on the positive
side of the transition plane ((v; — p™) - n(™°) > o) than end vertices v; on the
plane’s negative side (v, — p™)) - n(™) < o).

Taking a closer look at the estimated transitions (see Figure 6.4.4), we observe

that their corresponding transition points do not always span a closed loop on the
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Figure 6.4.4: Filtering Transitions: For valid joints, transition points (gray)
span a closed loop on the input geometry (green disks). However, for a subset of
transitions (red disks), they only cover a partial loop on the geometry, indicating
that the two corresponding body parts are semi-rigidly connected. Because it is
unclear how a mechanical joint should be placed for such degenerate transitions,
we filter them out.

input geometry, as illustrated in Figure 6.4.4 and Figure 6.4.1 (c) with red disks.
Because it is unclear how a mechanical joint should be placed on a transition that,
e.g., only covers half of the geometry, we filter out such degenerate transitions. We
find that a good measure for degeneracy is given by the ratio of the largest- and
mid-eigenvalue of the 3x3 PCA covariance matrix at (m, 0) because it clearly dis-
criminates between cases where transition points are close to circularly distributed
(green disks in Figure 6.4.4) and the degenerate cases. If the largest variance A, is at
least a factor flarger than the mid-variance A,, we reject the transition. This leaves
us with the set of transitions shown in Figure 6.4.1 (d).

Because it is unclear from the articulation data where to best place joint centers

on the transitions, we set the centers to the closest intersection ¢(™°) of transition
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(p'™°), n(°)) with an approximate medial axis representation of the fabrication
mesh F. Because the medial axis transform [Blum 1967] is unstable and leads to
many unintuitive branches, we use the recent scale axis transform [Miklos et al.
2010] instead. Placing joint centers on the scale axis is reasonable because it al-
lows to maximize the mechanical joints’ sizes, hence, to leverage their structural
strength. Furthermore, this choice guarantees that the joints’ center is always in
the interior of F. The final set of oriented joint locations (¢, n) is shown in Fig-

ure 6.4.1 (e).

6.4.2 OPTIMIZING PARAMETRIC JOINTS FOR STRENGTH

Given an oriented joint location (¢, n), as illustrated on
the left with a cylinder with a single mid-transition, we now
estimate mechanical joints. To this end, we cast our hinge
and ball-and-socket designs as parametric, geometric mod-
els of joint strength (see Figure 6.4.6 left). To minimize in-
terference of the joints with the character’s overall appear-

Figure 6.4.5 ance, we limit their parameters so that the sockets for both
designs are guaranteed to be embedded in the maximum inscribed sphere of ra-
dius 7,y in the fabrication mesh F, at the joint’s rotation center c (see dotted,
black circles in Figure 6.4.6). Furthermore, we keep a minimal distance d between
the joint parts to prevent their fusion during manufacturing.

When designing structures, civil engineers repeatedly analyze the stress distri-

bution within the structures’ bodies under a set of typical loading scenarios (see,
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e.g, [Beeretal. 2011]). A simple view is that the average stress across a given cross-
section A is given by the force per area ¢ = F/A, where F is the residual load. Ifa
local stress level is too high, a structure could break, hence, they adjust the design’s
dimensions in that particular region, thereby increasing the corresponding critical
area. In the same spirit, we identify a total of three critical cross-sectional areas
for each of our designs (see Figure 6.4.6 right) and maximize each joint’s minimal
area. While these critical areas are parameterized with only two parameters for our
ball-and-sockets (the socket’s radius r and a height parameter h, see Figure 6.4.6
top row, left), we need three parameters for our hinges: The outer and inner radii
R and r, and the width b, limiting the hinge’s toroid (see Figure 6.4.6 bottom row,
left). This leads to the following two constrained max-min optimization problems.
Ball-And-Socket Joint: For our ball-

and-socket design, we get

in Ai(r, h), 6.
max min (r,h) (6.4)

with I = {1,2,3} and constraints r;; >

d r T r>dandr—d>h>\/rr — (r—d)

Figure 6.4.7

limiting the joint’s feasibility as shown on
the right in red and green, respectively. Note how the curves corresponding to
equal areas (in blue) meet at a single point A. For almost all pairs (d, 7.y ), our
max-min problem leads to three equal critical areas. If the joint is infeasible or its

minimal critical area is below the global threshold A;,, we reject it.
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Hinge Joint: Similarly, we get

i Ai R, ,b, 6.
(e, min Ai(R,1,b) (©3)

withI = {1,2,3} and constrained by r > d,R > d +r, 12, > (%)2 + R? and
b > 2d for our hinge design.

Note, however, that the ranges for our current designs are limited in directions
perpendicular to the joint’s orientation (compare with Figure 6.4.6 left). While ro-
tational joint motion is too restrictive for our current hinges, joint motion around
axis n is unrestricted for our ball-and-sockets. These spherical joints are there-
fore well-suited for common joints found in hips and spines. For elbow, knee, or
shoulder joints, however, they are unfit. Because it is unclear how to estimate joint
types, ranges, and the hinges’ rotation axes from the charac-
ter’s skin, we give the user the option to specify them. Be-
cause general ranges are not rotation-invariant w.r.t. angle-

axis (0, n), we disambiguate by introducing a right-handed,

orthogonal joint frame [a, n, f] whose forward axis f (red ar-

row on the left) is aligned with the direction where 6 is zero.
Figure 6.4.8 Note how axis a (in blue) falls together with our hinge’s ro-

tation axis.
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Ball-and-Socket

O0d

Figure 6.4.6: Critical Cross-Sectional Areas: (top) Our ball-and-socket de-
sign with its critical areas A, (red, circle of radius rmax with centric hole of radius
r), A, (green, open cylinder of radius r — d and height h — /r> — (r — d)?), and
A, (blue, circle of radius /(r — d)* — h*). (bottom) For our hinge design, we
get A, (red, twice the area of circle with radius r — d, assuming this section to
break in double-shear [Beer et al. 2011]), A, (green, twice the rectangular area
with sides b —2d and R —d — r), and A, (blue, circle with radius rmax reduced
by twice the rectangular area with sides b and R — (r — d)). Area A, (brown)
is non-critical because for all feasible hinges, there is a h so that A, > A,. In
practice, we choose h so that areas A, and A, are equal.

Hinge
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User-Intervention: This frame is uniquely defined by our estimated joint lo-
cations, up to the axis’ a rotation angle w.r.t. the joint’s orientation that we let the
user choose. Ranges can then be specified by direction-dependent opening angles
¢(0) for our ball-and-sockets, and forward (y) and backward (y,,) swing angles for

our hinges (see Figure 6.4.9 left).

Ball-and-Socket

Hinge

Figure 6.4.9: Joint Ranges: (top) Range constraints for our ball-and-sockets
may reduce open cylinder area A, (green) of radius # and height s. The “un-
rolled” cylinder area (see graph in the lower right) is reduced by the area under
£(6) that overlaps with range [o,s]. Value f at a 8 (brown point) is given by the
intersection of line through joint center ¢ and slope tan(a 4+ ¢(6))*, with the
infinite cylinder of radius + (see upper right, note that cosa = %). (bottom)
Forward and backward constraints for our hinges may reduce critical area A,

by A’ each, as illustrated with a swing angle s that leads to a combined angle

a + 7y larger than 9o° (with cosa = =)
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Range Constraints: These range constraints may reduce critical areas of our
joint designs as illustrated in Figure 6.4.9 right. For our hinges (bottom row), a
swing angle that is — when combined with a — larger than 9o°, reduces section A,
by an amount A’. This reduction can be expressed in closed form, parametrized
by the hinge’s set of parameters. To incorporate the range constraint ¢ () into our
ball-and-socket design (top row in Figure 6.4.9), we reduce the cylindric area A,

with circumference 2z’ (¥ = r — d) by

/”’ min (s, max (o, f(6))) 6r'd6, (6.6)

with cylinder heights = v/r* — #>and f(§) = h— m. A similar derivation
leads to areduction of area A, in cases where the sum of the maximal opening angle
and a is larger than 90°.

Note that we recompute these critical areas with their reductions in each itera-
tion of our joint optimizations, and that our max-min formulations balance these
areas up to equality as long as the constraints allow it. Infeasible designs, such as a
socket that cannot hold its ball, are caught by our feasibility constraints. Without
user-intervention, we can automatically generate articulated models with spheri-
cal default joints with constant, global constraint ¢(6) = . Our geometric formu-
lations, however, are only approximate models for joint strength and optimality
w.r.t. structural strength is not guaranteed. Nevertheless, we avoid weak joints by
maximizing their minimal critical cross-section and rejecting them if this section
has a value below the global threshold A;,. Also, while our two basic joint types

lead to output models with sufficient DOFs, our recipe of identifying critical sec-
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tions and maximizing their minima is general and applies to other joint designs

also.

6.4.3 FABRICATING POSABLE JOINTS WITH FRICTION

From the joints’ blue prints (see Figures 6.4.6 and 6.4.9 left) together with device-
dependent manufacturing, user-provided range, and estimated joint parameters,
we then generate an implicit CSG representation of the volume (in green in Fig-
ure 6.4.10) that we have to remove from fabrication mesh F to introduce a joint
at its estimated location. We call this volume joint hull. After polygonizing these
hulls, we carve them out of F with mesh-boolean difference operations (see Fig-
ure 6.4.10 right), resulting in fabricatable output models with desired kinemat-
ics. These models, however, are unlikely to retain a pose once placed into it, and
are more like a printed “rag doll.” To overcome this limitation, we fabricate small
bump spheres of radius r; onto the positive joint parts similar to [ Grey 1999; Wai
2006]. To prevent fusion of movable parts during manufacturing, we extent their
ideas by subtracting spheres with same centers but extended radius r, 4 d from
the negative joint parts also, as illustrated in the top, right corner in Figure 6.4.10.
This additional friction mechanism results in posable joints with continuous posi-
tion control. While these friction bumps could potentially stick out of F after joint
carving, we did not observe such cases when estimating our demonstration mod-
els. To guarantee embeddedness, we could reduce radii 7,y by 13, or, alternatively,

invert the bumps and add them to the negative joint parts instead.
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Ball-and-Socket

Hinge

Figure 6.4.10: Frictional Joint Designs based on adding small calibrated
bumps. (top) Ball-and-socket joint hull with friction bumps on the ball part and
(bottom) hinge joint hull with bumps on the toroidal part. Printed articulated
models can then retain their pose.

6.4.4 AVOIDING JOINT-JOINT COLLISIONS

As of now, we can successfully turn simple skins into posable output models,
consisting of a set of jointed, rigid pieces that we can print assembled. For sophis-
ticated input skins, however, estimated joint locations are often in close proximity
to one another, and, as aforementioned and illustrated in Figure 6.1.2 right, corre-
sponding joint hulls are likely to collide when we maximize the individual joints’
sizes. Such overlaps may lead to broken joints, as a closer look at an example of
two colliding hulls unveils: if, e.g., a hull volume of one joint contains the part of
another spherical joint’s socket that prevents its corresponding ball from popping
out, we get two disassembled pieces in our output. Hence, we resolve such joint-

joint collisions before carving their hulls out of the fabrication mesh F.
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In a first naive approach, we could simply remove individual joints, until there
are no further hull collisions left. However, while this strategy guarantees func-
tioning joints in our output models, it is not optimal, because we would reject far
more of the “fabricatable” input articulation than necessary. A second approach
would act directly on what causes the collisions in the first place: the proximity
between estimated joint locations. By moving these locations, we could “fit” more
jointsin F. However, because we set the joints’ rotation centers to these locations,
this second strategy would significantly change the semantics encoded in our input
articulation (if locations were moved away from their corresponding transitions).
In the following, we describe our collision resolution procedure that tries to keep
as much of the input articulation as possible while avoiding weak joints and keep-
ing their rotation centers fixed. See Figure 6.4.11 and the accompanying video for
illustrations.

To initialize our resolution process, we proceed as previously described (Sec-
tions 6.4.1, 6.4.2, and 6.4.3). We compute the radius ., of the maximum in-
scribed sphere, then optimize a parametric joint model consistent with any user-
specified ranges at each estimated location, resulting in a set of joint hulls. Next, we
compute all pairwise collisions between these hulls that we inflate by half the dis-
tance d, to guarantee a minimal offset between individual joints also. (Note that
when we speak of collisions in the following we refer to collisions between such
inflated joint hulls). To coordinate further processing, we then abstract joint hulls
with nodes and pairwise collisions with undirected edges of what we call a collision

graph. Thereafter, we extract all connected components of this graph with orders



larger than one, and push this collision groups onto a collision stack. Refer to Fig-
ure 6.4.11 (a), where we use the notation C! to uniquely identify each group i at
time step t of our resolution.

As long as there are groups on this stack, we pop the topmost and repeatedly
reduce the radius 7y, for the joint with largest minimal cross section, as it is cur-
rently the strongest within this group. We then reestimate its optimal parame-
ters, and check for collisions with its updated joint hull. We stop when either a
collision (or several) got resolved, a joint gets infeasible (e.g., a joint’s minimal
critical area gets smaller than Ay, ), or
ajoint hull is colliding with a hull out-
side of its collision group. While such

outside collisions are rare in practice, it

is crucial to check for them, as the ex-

Figure 6.4.12 ample of three spherical joint hulls in
the inset figure on the left illustrates. When we reduce the size of the “strongest”
of the upper pair of colliding joints, we introduce a second collision with a “node”
outside of that group.

If collisions got resolved, we are either done (no more collisions within this
group) and continue (see Figure 6.4.11 (c)), or split the collision group into sub-
groups, if necessary, and push those onto the stack. See Figure 6.4.11 (b) for an
illustration, where we use wa. to denote the subgroup j with previous group corre-
spondence history x. If no split is required (single group), we simply push back C,

without the resolved “edges” and “nodes”. However, if a joint becomes infeasible or



amember collides with a joint outside of its collision group, this group is unresolv-
able without excluding a joint. (Note that while we could add outside collisions
to groups or merge groups of the involved members, such “additions” or “merges”
may lead to cyclic behavior in our resolution process. Hence, we exclude a joint
instead thereby guaranteeing convergence.) We observe that a good candidate for
exclusion is given by the member of the current group that was “weakest” after ini-
tialization (smallest A, ). While this heuristic leads to pleasing output models in
practice, this to-be-excluded joint could also be chosen by the user. After an exclu-
sion, we pop all descendants of the original collision group (all groups that have
first index k in their correspondence history, if k is the original group’s index after
initialization), and push the original collision group (k) with reset radii 7, and
without the excluded joint back onto the stack. Such a reset is necessary because
an exclusion of a joint might make previous reductions of joint sizes unnecessary.

Note that our collision resolution process performs evenly well on any other
parametric joint designs (other than our hinges and ball-and-sockets from Sec-
tion 6.4.2) as our collision handling is evaluated on arbitrary hulls, with the only
requirement that the joints have to have a single rotation center. Because joints
can only get smaller and we exclude a joint if a member gets infeasible or collides

with an outside joint, our collision process converges.
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Figure 6.4.11: Resolving Collisions: Colliding joints are shown in red, non-
colliding joints in green. For top (a-d) and bottom row (e-h), we have joint hulls
on top, corresponding collision graph, and stack in the middle and at the bottom.
(a) Initial collision groups for a full character, (b) group split after a resolution,
(c) completion of a collision group, and (d) final set of non-colliding joint hulls
that we then carve out of F. (e) Initial collision group for a character’s tail,
(f) a joint gets infeasible (Amin too small), (g) exclusion of a joint, (h) updated
joint hulls and collisions after a group reset.
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6.5 REsuULTS

We have created and printed a total of six models based on five skinned charac-
ters generated by the SPORE Content Creator (“Grumpy” in Figure 6.1.1, “Chicks”
and “Dinofrog” in Figure 6.5.2, “Cristal Frog“ and “Lippy” in Figure 6.5. 3),and a
realistic human hand model that we rigged and skinned in Maya (see Figure 6.5.4).
Our five SPORE examples include diftuse and normal maps, and joints were carved
out of their colored fabrication meshes, whose geometric detail we computed by
inverting normal mapping [Nehab et al. 2005 ]. This inversion leads to significant
quality improvements in F,
hence, also in our printouts,
as illustrated on the right
with a comparison of input
and reconstructed geometry

for our “Grumpy” character.

All of our articulated output

Figure 6.5.1 models were printed with an
Objet Connex soo printer. We used three of Objet’s hard, plastic-like materials
called “VeroBlack” (“Lippy” and “Cristalfrog”), “VeroClear” (“Grumpy,” “Chicks,”
and “Dinofrog”), and “ABS-like digital material” (hand model). While “Vero-
Clear” is transparent and the embedded joints, therefore, visible, the ABS-like ma-
terial is the structurally strongest (e.g.,, LEGO is made out of ABS). Objet’s support

material is gel-like and can be removed with a water-jet.
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To identify the minimal offset d to ensure jointed parts to be movable, and the
critical area threshold Ay, to avoid weak mechanical joints, we estimated hinges
and ball-and-sockets for a single-transition cylinder (see Figure 6.4.10 right) with
varying radius and for different offsets d, and then printed them with the three
printer materials: beyond offsets of 0.3 mm, parts started fusing and the support
material could not be water-jetted or “broken out” any longer, and joints with min-
imal critical areas smaller than 10 mm? for “VeroClear” and “VeroBlack”, and 3
mm?® for the ABS-like material, started to get brittle. With a similar empirical ex-
periment, we identified a friction bump radius r;, of 0.7 mm. Note that this bump
radius is larger than the minimal distance d.

Prior to our articulation estimation, we scaled our input to target sizes (in di-
rection normal to the ground plane shown in gray in Figures 6.1.1, 6.5.2, 6.5.3,
6.5.4) of our output models: 150 mm for “Grumpy” and our hand model, 85 mm
for “Chicks,” and 100 mm for “Lippy,” “Dinofrog,” and “Cristalfrog”. To filter de-
generate transitions, we used factors f € [3.5,4.0]. Generally, very little user-
intervention is needed. E.g., for “Grumpy,” the user-intervention was restricted
to switching 10 joints to hinge type and specifying three angles each (forward
and backward swing angles, and rotation angle around the joint’s estimated ori-
entation axis). In addition, we specified spherical range constraints for three neck
joints (with again, three user-specified angles each, because we use elliptical open-
ing angles ¢(0) = ¢_sinf + ¢, cos 0). All other joints are defaults with global,
rotation-invariant range f of a few degrees. With our unoptimized implementa-

tion that uses an implicit, extended, regular-grid-based marching cubes approach,
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it takes approximately 5.5 hours to process “Grumpy,” which is still a fraction of the
needed manufacturing time of 18 hours. The time required for processing highly
depends on the number of collisions that have to be resolved prior to joint carving.
While our SPORE examples had many collisions to resolve, our hand model only

had a single collision between two neighboring knuckle joints (overall processing

time under 10 min).

Figure 6.5.2: “Chicks” and “Dinofrog”
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Figure 6.5.3: “Cristal Frog” and “Lippy”
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Figure 6.5.4: “Hand”
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6.6 CONCLUSIONS AND DISCUSSION

We have devised a method to generate fabricatable characters from skinned in-
put meshes, e.g., suitable for personalized posable toys. While we are able to gen-
erate characters with spherical default joints fully automatically, we allow users to
specify joint types and ranges for joints where defaults are not as natural. Note
that input skins have transitions where joints are expected, because transitions be-
tween joint influences are naturally at places where the model’s geometry bends
the most during animations. However, while we could always have the user re-
move unwanted transitions and corresponding joints if there are too many, our
system is not able to estimate joints where there is no input data. In the future, we
expect that our method and its successors will enable a fully “automatic 3D print
button” for characters.

There are several remaining challenges. Current 3D printers introduce many
limitations on what we can print. Although our system fully supports colored char-
acters, we were not able to print posable articulated output models in full color.
Furthermore, while we avoid weak joints by optimizing parameters of our geo-
metric approximate models of joint strength, our hinge and ball-and-socket de-
signs are not modeling structural strength to a level of accuracy where our system
could be fed with a set of measured material parameters to estimate structurally op-
timal joints. As aforementioned, our input skins could also include fine geometric
detail with cross sections smaller than Ay, or even parts that are completely dis-

connected from the model’s main body, or overlap in the character’s rest pose. This
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would require to either significantly changing the input geometry (locally inflate
geometry, adding artificial connectors, etc.) or rejecting those parts completely.
Also, our articulated outputs can be understood as first order, piecewise linear
approximate reproductions of the virtual input articulation. Complete piecewise

continuous reproductions that include a deformable skin, are left as future work.
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In theory there is no difference between theory and practice.

In practice there is.

Yogi Berra

Scale-Aware Fabrication

3D geometry is ubiquitous and a fundamental part of practically all CG content.
In this chapter, we propose a method for the automated, scale-aware fabrication of
an object’s static geometry. 3D modeling tools are unaware of manufacturing con-
straints and their output models are tailored for rendering rather than fabrication.

If they contain features too thin and fine, they break during or after 3D printing.
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We will discuss a method to abstract such geometric features to ensure that models
print correctly, then engrave detail to make sure these features are still perceived
in final printouts.

After a brief introduction in the next Section, we examine desired properties of
abstraction for manufacturing in Section 7.1. Thereafter, we introduce our cali-
bration part to identify the engraving depth for a targeted AM device, then detail
on our abstraction, and engraving in Sections 7.4 and 7.5, respectively. We provide
demonstrations of our geometry processing in Section 7.6. In Section 7.7, we sum-
marize and discuss how we plan to extent our processing to support feature-aware,

local thickening also.

7.1 INTRODUCTION

Recently, affordable desktop printers such as MakerBot’s Replicator2 or 3D Sys-
tems’ Cubify became available allowing us to print custom parts at home at the
press of a button. However, the vast majority of 3D modeling tools are unaware
of manufacturing constraints and their output models are tailored for rendering
rather than fabrication. While detailed 3D models such as the Eiffel tower in Fig-
ure 7.1.1 (left) render correctly at any screen resolution and far camera views, fine
features are skipped and fuse during or break after printing. Similar to the way 2D
printers print a document line after line, a 3D printer builds a given model layer-
by-layer. Since models are built in such an additive manner, incorrectly printed or
skipped features will effect all the features above it (error accumulation).

We present a geometry processing capable of estimating a model tailored for
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Figure 7.1.1: Rendering vs. Manufacturing 3D models capturing every hole
and protrusion of real-world objects (left) render correctly at any far camera
view. We draw inspiration from souvenir manufacturing where detail is manually
abstracted and engraved to ensure that miniature models are fabricatable (right).

small-scale manufacturing from a given polygonal mesh. We first represent our
input model and its embedding with unions of interior and exterior medial balls.
Next, we detect non-fabricatable intrusions by analyzing radii along edges con-
necting the exterior medial balls, then mark a subset as belonging to the interior.
We then extract a watertight, intersection free mesh by identifying the surface be-
tween the edited unions of exterior and interior balls. To engrave features, we offset
our abstracted model by shrinking interior and growing exterior balls by a device-
dependent, calibrated offset parameter. Thereafter, we unify the unions of balls
representations of our offset, abstracted model with those representing the origi-
nal input, resulting in a fabricatable model with preserved detail.

While Stava and colleagues [2012] were the first to present a technique capable

of improving the structural strength of weak links in 3D-printable models and Luo
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etal’s [2012] method allows us to divide such models into smaller parts if too large
(scalability), our method is closer related to model simplification in that it abstracts
detail [Mehra et al. 2009]. However, unlike typical mesh simplification [ Garland
and Heckbert 1997] and LOD representations [Hoppe 1996, we are focusing on
manufacturing rather than rendering. Stava et al. [Stava et al. 2012 ] propose local
thickening, besides strut insertion, and hollowing. Thickening of features too thin
and fine, however, may lead to blobby output models when targeting small scales
on a low resolution printer. In contrast, we draw inspiration from souvenir manu-
facturing where miniature models with engraved detail are manually designed (see
Figure 7.1.1 right).

Manufacturing adjustments to polygonal meshes are challenging because the
output models need to be manifold, closed, and self-intersection free. Otherwise,
voxel classification is ambiguous and AM devices cannot identify the part of the
volume belonging to the interior (“place material”). To this end, we base our geo-
metric processing on the rigorous power crust algorithm by Amenta etal. [20013;
2001b]. We extent their framework with a minimal adaptive Poisson-disk sam-
pling of the input geometry, then analyze the resulting graphs connecting medial
ball centers in our abstraction. Our framework allows us to deal with any topolog-
ical changes during abstraction, while preserving sharp corners and edges in non-
critical regions, and guaranteeing that the output is water-tight and intersection

free.
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7.2 OVERVIEW

The major objective behind mesh simplification and LOD is reduction of the
overall number of triangles while resembling the original geometry as good as pos-
sible when viewed from a far camera. This processing is typically unaware of the
enclosed volume, hence, may introduce non-manifoldness [Rossignac and Borrel
1993 ] and self-intersections [ Garland and Heckbert 1997].

In contrast, the main goal in scale-aware manufacturing is to keep as much detail
as possible while keeping the model fabricatable. We seek for an abstraction oper-
ator capable of “naturally” filling small and deep intrusions. To visually preserve
the non-fabricatable detail, we can engrave such indentations. Unlike for mesh
simplification, our processing must be volume-aware.

To craft a proper algorithm, we first compile a list of desiderata for model ab-
straction in a manufacturing context. Before examining this list, we discuss our

input. Finally, we restate the required properties of our output.

7.2.1 INPUT: GEOMETRY WITH FINE AND THIN FEATURES

Our processing takes a detailed polygonal mesh such as, e.g., the Eiffel tower
in Figure 7.1.1 (left) as input. While we assume the input itself to be manifold,
closed, and self-intersection free, we can pre-process problematic meshes with,
e.g., the recent generalized winding numbers [Jacobson et al. 2013 ]. Without loss

of generality, we assume the polygonal faces to be triangles.
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7.2.2 ABSTRACTING

We can think of an abstraction as “tighter” convex hull, adaptively filling in con-
cave indentations if narrow and deep as illustrated in Figure 7.2.1 (top, red cir-
cles) in 2D. However, concave but wide corners shall be preserved (top, green
circles). A well-suited measure capable of differentiating between these cases is
rate of change of medial ball radii, starting where an intrusion becomes too narrow
(top rows, middle).

3D abstraction shall preserve sharp edges, interrupted by an indentation with
high fidelity (bottom, upper left). Furthermore, closing shall take the curvature at
the boundary of a concavity into account (bottom, upper right). Conceptually, we
can achieve 3D abstraction by rolling a ball over such narrow intrusions, steadily
connecting the two points where the ball is touching the intrusions’ boundaries
(bottom, lower left). Moreover, abstraction shall avoid alternating any geometry
other than non-fabricatable concavities, especially sharp corners and edges (bot-

tom, lower right).

7.2.3 OUTPUT: GEOMETRY WITH ENGRAVED DETAIL

Our output models are tailored for additive manufacturing at small scales. To
ensure that thin and fine features are still perceived, we engrave them using a cali-
brated engraving depth (Section 7.3). While we generally avoid weak links in our
output models, we cannot give global structural strength guarantees and the tech-

nique by Stavaand colleagues [Stava etal. 2012 ] could be used as a post-processing
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Figure 7.2.1: Abstraction Concavities that are wide (top, green) shall be left
unchanged by our abstraction, while narrow and deep ones (top, red) shall be
closed. A well-suited measure for differentiating between these cases is rate of
change of medial ball radii, starting where intrusions become too narrow (top,
middle). Closing shall be aware of interrupted edges (bottom, upper left) and
curvature (bottom, upper right) at the boundary of the intrusion. Hence, a
well-suited abstraction operator acts like a ball rolling over intrusions, steadily
connecting the two points where the ball is touching (bottom, lower right).
3D abstraction shall leave concave corners and edges in non-critical regions
unchanged (bottom, lower left)
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Figure 7.3.1: Calibrating Engraving Depth We designed a part with cylin-
drical intrusions of varying depths to identify the minimal engraving depth for a
particular printer-material pair.

for models with unusual weight distributions (such as, e.g., a heavy blob attached
at the tip of a thin cylindrical support). Note, however, that a physics simulation is
tricky because it is almost impossible to simulate all interactions of a person with a
printed object. Our technique, while simple, leads to perceptually pleasing results
while avoiding complex physics simulations.

We require our output models to describe their enclosed volume unambigu-
ously. Otherwise, they are either rejected by the AM software or printed incor-
rectly. Specifically, we require our output models to be free of self-intersecting faces,

manifold, and closed.

7.3 CALIBRATING ENGRAVING DEPTH

To identify the minimal engraving depth d,,;, for each printer-material pair, we
created a calibration part with cylindrical intrusions of varying depths (compare
with Figure 7.3.1). Note that d,,;, might vary with orientations, especially on print-
ers with significant differences between vertical and horizontal resolution. We cal-
ibrate for the “worst-case” and choose d,;, such that engraved detail is perceived
from all viewing directions. The motivation for such a direction-invariant cali-

bration is two-fold: we do not always have control over the alignment of parts
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prior to printing (e.g, when using online services or printers with automatic place-
ment). Furthermore, direction-dependent adjustments generally break symme-
tries for man-made shapes and, hence, are undesirable from a perceptual point

also.

7.4 ABSTRACTING GEOMETRY

We now describe the estimation of an abstraction of a given input geometry.
We first review a Voronoi-based medial axis transform (MAT), providing us with
aunion of balls representation for both, our input and its embedding. We then de-
velop our editing of ball correspondence (interior vs. exterior), resulting in scale-
aware abstracted surfaces. To give the reader intuition, we start our discussion with

the 2D case, then generalize the developed algorithms to the third dimension.

7.4.1 REPRESENTING GEOMETRY USING UNIONS OF MEDIAL BALLS

Given a dense enough sampling of a 2D curve, it was Blum [1967] who first
observed that a subset of the corresponding Voronoi diagram (VD) provides us
with an approximate medial axis. This axis consists of all Voronoi vertices (points
closest to more than two samples) and the subset of Voronoi edges (set of points
closest to exactly two samples) not crossing the input curve (see Figure 7.4.1 (a-
c) for an illustration). It can be shown that the approximate axis of a uniformly
increasing sampling converges to the curve’s actual medial axis [Schmitt 1989].

If we associate each Voronoi vertex with a radius set to the distance to its closest

samples and mark the resulting 2D balls as either interior (green circles in Fig-
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ure 7.4.1 (d)) or exterior (red circles), we get a union of medial balls representa-
tion (MAT) for both, the interior and exterior of the given curve. (Note that we
restrict the exterior of the curve to a bounded, convex region. Hence, all Voronoi
cells are finite. )

Given these unions of interior and exterior balls, we can reconstruct the curve
by forming the power diagram (PD) of these balls (Figure 7.4.1 (e)). Power dia-
grams are a generalization of Voronoi diagrams to weighted sites. Specifically, sites
with centers and associated radii. While we use the Euclidean metric to determine
to which Voronoi cell a given point p belongs to, we use the power metric when
dealing with sites with associated radii: p belongs to a power cell if the squared
Euclidean distance to the site’s center minus its squared radius is smaller than for
any other site. While the dual of Voronoi diagrams are Delaunay triangulations
(DT), the dual of power diagrams are so called regular triangulations (RT). For
convenience, we provide the reader with a formal definition, intuition, and algo-
rithms for the construction of both diagrams and their duals in Appendix B. The
piecewise linear reconstruction of the curve (see Figure 7.4.1 (f)) is then given
by the set of power edges that are dual to edges connecting interior and exterior
medial balls in the regular triangulation. The reconstructed curve is interpolating,
meaning that the samples are part of the reconstruction.

Most interesting about this algorithm is that it comes with provable guaran-
tees, conditioned on a sampling criterion and an assumption on the smoothness
of the sampled curve [Amenta et al. 1998; Amenta and Bern 1998 ]: Given a twice-

differentiable curve C, we call a sampling of C e-sampling (with ¢ smaller than 1)
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Figure 7.4.1: Unions of Medial Balls: For- and Backward Transformation
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if the distance from any point p € C to the nearest sample is at most € times the
distance from p to the nearest point on the medial axis of C. Intuitively, this crite-
rion requires a denser sampling in regions of high curvature or where other parts
of the curve are close. Given a e-sampling of a smooth C, both, the interior me-
dial axis and the reconstruction are topologically equivalent to C (same connected
components, number of loops, etc.). Most relevant in our context, however, is
the unconditional guarantee [Amenta et al. 2001a] that the reconstructed curve is
manifold, closed, and self-intersection free.

Next, we discuss how we can generate a minimal, adaptive Poisson-disk sam-
pling that — in average — fulfills this criterion everywhere but near sharp features. At
corners or edges, the medial axis is touching the surface. Hence, we would need an
infinite number of samples to satisfy £-sampling. Given a polygon (piecewise lin-
ear curve), we first create a dense pool E, of uniform edge samples: a sample lies on
any particular edge with probability proportional to its length. To efficiently draw
edges according to these probabilities (in O(1)), we use Vose’s alias method [Vose
1991]. After drawing a particular edge with end points a and b, we place a sample
according to a + U (b — a) where U denotes a uniform random variable on the
unit interval.

To generate a Poisson-disk sampling, we repeatedly pick a sample s € E,, then
invalidate all samples within a radius € times the distance r of s to the closest point
on the medial axis, until there are no (valid) samplesleftin E,.. This sampling, how-
ever, does not guarantee that samples are placed onto sharp edge corners. Hence,

our reconstruction would perform poorly near such edge ends. Inspired by Corsini
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etal’swork [2012], we add a second pool C,, containing all edge corners at which
=% > o.1 where a denotes the angle between the two incident edges. During
Poisson subsampling, we first draw samples from this second pool C,, invalidate
all samples within a er-neighborhood from both pools, until C, is empty. There-
after, we continue sampling from E, in the manner described above.

What remains is a discussion on how to best choose the radii r used to invalidate
neighboring samples in the above procedure. Recall that the radius r associated
with a sample s can at most fall together with the Euclidean distance of s to the
closest point on the medial axis. However, because the medial axis is unknown,
we use closeness to an initial approximate axis instead. To this end, we compute
the Voronoi diagram of a Poisson sampling with a reasonably small but constant r,
then initialize the radii with the distance of the respective sample s to the closest
Voronoi vertex. Because the medial axis is touching the curve at its sharp corners,
we also consider closeness to these additional vertices for improved performance.
To ensure robustness, we set the radii to values of at least r,,;,, guaranteeing that
no two Poisson samples are closer than this minimal radius times €.

Unfortunately, the above algorithm and theoretical guarantees do not directly
translate to the third dimension. As Amenta et al. illustrate in their work ([ Amenta
etal. 1998], Figure 6), most but not all 3D Voronoi vertices lie close to the medial
axis, independent of how densely we sample. However, with a small adjustment,
the above construction and guarantees still hold. Specifically, they suggest to only
use the subset of Voronoi vertices that are furthest away from its corresponding

sample s, one on either side of the input geometry. They call this subset of vertices
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poles. The intuition behind this choice is simple: if we sample densely enough,
corresponding Voronoi cells are long and skinny. Hence, the Voronoi vertices fur-
thest away from the corresponding sample s are most likely the ones closest to
the true axis. With this reduced set of Voronoi vertices and corresponding medial
balls, the above construction, e-sampling condition, and guarantees translate to
3D.

Our Poisson-disk sampling for triangular input works in a similar manner than
the one for polygons. Instead of one sharp corner pool, we have two: one for edges
and one for 3D edge corners. Given an input mesh, we first extract all edges with
a normalized angle g > 0.1 between the face normals of the two adjacent trian-
gles. Next, we identify the sharp corners in this set of edges in the same manner
as described above for polygons. In 3D, we have — in addition to these corner and
edge pools — a third pool for triangles, denoted T,: a sample falls onto a trian-
gle with probability proportional to the triangle’s area. Hence, we can again use
Vose’s method to draw a triangle (with vertices a, b, and a), then generate a uni-
form sample using (1—+/U, )a++/U, (1— /U, )b++/U, U, c with two uniform ran-
dom variables U,, U, on the unit interval. In contrast, Corsini et al. [ Corsini et al.
2012] propose and use heuristics for drawing uniform triangle samples. Unlike
their methods, Vose’s algorithm allows to generate a sample with 2 table look-ups,
independent of the triangles’ shapes. During Poisson-disk sampling, we first draw
samples from the corner pool, invalidate all samples in an er-neighborhood from
all three pools, until C, is empty. Analogously, we continue with the edge pool

E,, then with T, invalidating samples in both E, and T, then only in T),. Corsini
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etal. [2012] show that the above uniform sampling methodology has blue noise
characteristics, hence, is independent of the connectivity of the input mesh. Thisis
crucial when dealing with inputs with sliver triangles. Moreover, the subsampling
is extremely efficient when storing the pool samples in a spatial hash.

We applied both, the direct translation from 2- to 3D with the unfiltered set
of medial balls (Voronoi-based approach), and Amenta et al’s pole-based varia-
tion [Amenta et al. 2001a] to simple shapes like the star in Figure 7.4.2. While the
pole-based clearly outperforms the Voronoi-based approach close to sharp edges
and corners (top row, middle column), the latter leads to an overall better qual-
ity triangulation (bottom row, right column). When further examining both re-
constructions, we observed that the pole-based reconstruction is noisy, especially
in flat regions. The reason for this uneven reconstruction are not — as one might
first think — numerical instabilities in geometric computations (we ruled this out
by switching to an exact kernel supporting both, exact predicates and construc-
tors [CGA]). The problem is, in fact, that the pole-based approach is far more con-
servative than necessary in that it marks far too many Voronoi vertices as not being
part of the approximate axis. As the 2D comparison in Figure 7.4.3 clearly unveils,
the pole-based approach filters out a significant fraction of the overall medial balls
(compare (c) with (d)). This leads to the formation of new neighbor relationships
in the regular triangulation, hence, to dual power edges with end vertices not part
of the initial sampling (compare (e) with (f)). While the pole-based approach is
still interpolating the samples (this is guaranteed if we keep one ball on either side

of a sample), these additional vertices tend to be slightly off the input geometry.

13§



Figure 7.4.2: Reconstructions using the unfiltered set of Voronoi balls (top
row), poles and all Voronoi balls with radii larger than a threshold (middle row),
and poles only (bottom row). While the pole-based approach performs better
on edges (middle column), the unfiltered set leads to a smoother reconstruction
in flat regions (right column). Our heuristic (middle row) performs well on both.
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These observations suggest the following heuristic for the 3D case: first, identify
all poles, then add back all medial balls with radii larger than a (small) threshold.
Because small medial balls are only kept if they are poles, we avoid the artifacts near
edges of the Voroni-based approach (in the middle column in Figure 7.4.2, com-
pare top with middle row). On the other hand, we keep almost all medial balls
in flat regions, leading to a less noisy surface besides a boost in the quality of the
resulting triangulation (bottom and middle row, right colum). While we cannot
guarantee an error-free reconstruction (errors in vertex positions) , we can make
errors arbitrarily small by setting the minimal sampling radius r,,;, accordingly. For
additive manufacturing, we can choose ,,;, to be smaller than the resolution of the

printer.

~7.4.2 ABSTRACTION: ALTERNATING MEDIAL BALL CORRESPONDENCES

The medial axis transform from the previous Section provides us with the ideal
building block for our abstraction operations as illustrated in Figure 7.4.4 with a
2D example. We first extract all bridges from the exterior medial axis graph (b)
using Tarjan’s adopted depth-first-search [1974]. Bridges are edges belonging to
trees within a cyclic graph. This step is necessary because our input may consist of
several individual curves, leading to several cycles in the exterior axis. Because we
bound the exterior, we always have atleast one cycle. Next, we detect all connected
components, resulting in trees rooted at a cycle, with branches lasting to each in-
dividual intrusion of our input (b, red). Thereafter, we iterate over all branches,

detecting intrusions where the rate of change of radii along a branch end is slow,
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hence, the intrusion deep. We then mark corresponding medial balls as belonging
to the interior (d), followed by identifying the surface between the edited unions
of medial balls, resulting in an abstraction (f). Concavities where ball radii are
changing quickly, are left untouched.

Unfortunately, our 2D abstraction does not easily translate over to 3D. This is
due to the fact that medial axis graphs for 3D inputs consist of curve and surface
patches. Because not all 3D Voronoi vertices lie close the medial axis, we only need
to consider a subset of the resulting 3D graph. Amenta et al. [2001a] propose the
power shape, an approximate axis based on the set of poles, extracted from the
power diagram. However, power shapes have unintuitive edges, especially near
junctions. We tried several heuristics on both axis representations, with parings of
breath- and depth-frist-search strategies for rate of change measures most promis-

ing. However, it is too early to report on a best candidate.
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7.5 ENGRAVING DETAIL

For engraving detail, we need two operations: offsetting and set union. With
offsetting, we can shrink our abstracted surface by a calibrated engraving depth.
With a set union, we can unify the offset abstraction with the original geometry,
resulting in an engraved output. While we only discuss engraving in the following,

embossing can be done in a similar manner.

7.5.1 OFFSEITING

For offsetting, we first compute the MAT as we described in Section 7.4.1, then
shrink interior and grow exterior balls by our calibrated, device-dependent engrav-
ing depth d,,;,. When shrinking, we reject all balls with radii smaller or equal to
dpminy avoiding sites with negative weights. Thereafter, we extract the offset sur-
face by constructing a regular triangulation and its dual. Note that Amenta and
colleagues [2001a] mention this operation as an application of their power crust

algorithm.

7.5.2 SET UNION AND OTHER BOOLEAN OPERATIONS

Interestingly, we can easily extent our processing to support robust set booleans.
Given two input meshes .4 and B, we first compute an adaptive Poisson-disk sam-
pling, then compute their MATs. For unions, we reject all samples of A inside B
and vice versa. We then construct a MAT on the remaining samples from both

sets, followed by a reconstruction of the surface between the filtered set of interior
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and exterior balls. Similarly, we can compute the mesh bounding the intersection
and difference volume of A and BB. Because exterior and interior medial balls in-
tersect only shallowly, we could use our unions of medial balls for inside-outside
testing. However, the common ray-mesh intersection counting using an AABB
(Axis Aligned Bounding Boxes) tree on the input triangles, is more efficient and
avoids unnecessary rejects.

A 2D result of these operations is shown in Figure 7.5.1 (e) for a union of two
rectangles. While the proposed processing leads to a high fidelity reconstruction
overall, it smooths over a concave corner near one of the two intersection points.
This is not surprising because the intersection point is far from both medial axes
(b), hence, its immediate neighborhood not sampled densely enough during sub-
sampling (c). To overcome this limitation, we add the intersection points to both
corner pools C, and both sets of Voronoi vertices when initializing the sample radii
for A and B, respectively. This results in an adaptive sampling (d) that leads to
a high quality reconstruction everywhere (f). Adding intersection points for the
initialization of approximate distances to the respective medial axes is reasonable
because the combined axis has branches ending at these points (sharp corners).

Similarly, we compute all intersections between triangles of A and Bin 3D, then
add intersection points to the critical corner pool C,, and uniform samples of the
intersection edges to E,, (we ignore intersecting faces because we sample them any-

ways). A 3D union of two spheres is shown in Figure 7.5.2.
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(a) Input (b) Approx. Medial Axes

(c) Individual Sampling (d) Combined Sampling

(e) Union (Individual Sampling) (f) Union (Combined Sampling)

Figure 7.5.1: Set Union (2D)
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Figure 7.5.2: Union of Spheres

7.6 DEMONSTRATIONS

We provide a demonstration of our two-stage processing on a basic example
in Figure 7.6.1: we start by abstracting our input (a), closing deep and narrow in-
trusions (b). In contrast to alpha shapes [ Edelsbrunner and Miicke 1994], shallow
intrusions are not rounded off and are reconstructed with high fidelity (b, upper
left corner). We then shrink interior and grow exterior medial balls, resulting in an
offset abstraction (c). With a set union operation with the input, we then achieve
engraving (d) of abstracted detail. All sharp corners and low curvature concavities
are preserved (d, lower right).

For the Eiffel tower example in Figure 7.6.2, we used edge sampling pools E,, of
20’000 uniform samples. For extraction of the approximate medial axes for initial-
izing adaptive distances for the subsampling of both, our input and abstraction, we
used a uniform disk radius of 0.002 times the diagonal of the axis aligned bound

box of the tower, then adaptively subsample with r,,;, set to 0.0004 times the di-
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(a) Input (b) Abstraction (black)

(c) Offset abstraction (black) (d) Engraved output (black)

Figure 7.6.1: Abstraction and Engraving (2D)
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(a) Input (b) Abstraction (c) Engraving

Figure 7.6.2: Abstracting and Engraving Man-Made Shapes (2D)

agonal and an ¢ of 0.25. For our input, 3'111 Poisson-disk samples were generated,
for our union of of input and abstraction, 3’641 and 2’241, respectively. The sec-
ond sampling of the input is larger because we sample adaptively near intersec-
tion points with the abstraction. Because the abstraction contains less concavities,
hence, regions with high curvature, we need significantly less samples to represent

it with unions of medial balls.
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7.7  DISCUSSION AND FUTURE WORK

We have demonstrated a method capable of abstracting and engraving features
too fine and thin, for small-scale, additive manufacturing. While our 3D medial
graph analysis needs further refinements, our output models are all “watertight”
and self-intersection free — as desired.

Besides a thorough validation of our geometric operators, we plan to extend our
processing with local thickening and shrinking operations. As opposed to offset-
ting, such operators require non-uniform adjustments to ball radii. This is, how-
ever, challenging because medial balls may touch at several locations, far apart from
each other. When growing or shrinking the surface in one region, we may effect a
completely different surface patch. Hence, we would need to carefully sort these
conflicts, then copy medial balls, restricting effected regions to those in focus and
leaving others unchanged.

We believe that our MAT-based processing has several advantages over meth-
ods that rely on other representations. When working directly on surface meshes,
we lack volume-awareness. Hence, operations such as offsetting, or closing are ex-
tremely challenging, often leading to self-intersecting faces, or non-manifoldness.
Implicit surfaces together with a polygonizer such as marching cubes, on the other
hand, inherently deal with topological changes and allow us to generate “water-
tight” output. However, it is unclear how we would implement abstraction, local
thickening and shrinking on an implicit representation because it does not come

with an inherent medial axis.

147



The only true wisdom is in knowing you know nothing.

Socrates

Conclusion and Future Dire&ions

In this thesis we have explored computational aspects of 3D manufacturing an
object’s elastic deformation behavior, articulation, and geometry. After a brief

summary in Section 8.1, we discuss future directions in Section 8.2.
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8.1 SUMMARY

We built two custom stereo vision systems for the non-invasive acquisition of an
object’s elastic deformation properties, one with a hand-held, one with a robotic
contact probe. Our hand-held system is well-suited for the acquisition of force-
displacement samples of human soft tissue, while our automated system is tailored
for repeatable high precision acquisition of elastic materials.

We devised a data-driven representation and modeling technique that allows us
to digitize an object’s elastic deformation behavior, thereby simplifying the con-
struction of convincing deformable models by avoiding complex selection and
tuning of physical material parameters. Yet, our method retains the richness of
non-linear heterogeneous behavior.

We proposed a complete process for the physical reproduction and design of
materials with desired deformation behavior. We acquire deformation properties
of several printable base material and represent them using a non-linear stress-
strain relationship in a finite element model. We then express a desired behavior
with stacked layers of base materials using a combinatorial optimization, pruning
poor solutions from the search space with a branch-and-bound strategy.

We introduced a technique that facilitates the conversion of virtual articulated
models into a fabricatable format. Given a skinned mesh, we estimate posable toy
models, consisting of a set of jointed, rigid pieces that we can print assembled.
We start by extracting a set of potential joint locations, then maximize minimal

cross-sectional areas of hinges and ball-and-sockets, while avoiding non-functional
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joints through inter-joint non-penetration and other fabrication constraints.
Lastly, we proposed a technique for the automated fabrication of detailed static
geometry. Inspired by souvenir manufacturing, we abstract non-fabricatable fea-
tures, then engrave them. To this end, we extend a medial axis transform [Amenta
et al. 2001a] with a closing operator capable of filling narrow concavities while
keeping wide ones untouched. Our output is manifoled, closed, and intersection

free.

8.2 FUTURE DIRECTIONS

We use data-driven physics simulation paired with geometric processing as the
fundamental building blocks when solving our computational aspects of 3D man-
ufacturing. For physical reproduction, we acquire properties from real-world ob-
jects, simulate them using the finite element method, then estimate models, fab-
ricatable using AM. For the automation of digital content, we estimate physical
objects that best approximate the static and dynamic properties of virtual models,
while guaranteeing that the output geometry fulfills the requirements for printing.

So far we have explored aspects of manufacturing an object’s elastic deformable
properties. However, we lack reproduction cycles for many other properties that
characterize an object’s behavior under motion such as, e.g., plasticity and viscos-
ity. We believe that our data-driven simulation-based approach that first digitizes
properties of fabricatable base materials, then expresses a desired behavior within
this basis, can be adopted for reproduction of many other properties.

The vast majority of digital 3D content is not directly manufacturable due to the
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lack of methods for the automated conversion to fabriatable formats. We estimate
piecewise rigid approximate models from the most widely used format in charac-
ter animation. However, a complete piecewise continuous reproduction with a
deformable skin, and automated actuation is left as future work. Our MAT-based
geometry processing is volume-aware and is guaranteed to output a “watertight”
model. Hence, our framework is well-suited for many other geometry problems in
the context of manufacturing.

Lastly, for complete physical reproduction of digital and physical objects, we
seek methods for the concurrent acquisition, simulation, and fabrication of several
static and dynamic properties. So far our community has looked at many aspects
in isolation. However, to reach our goal of building Gershenfeld’s personal fabri-
cator [2005], we need to start integrating techniques in a single framework, for-
mulating combined material optimization for competing appearance, shape, and

interaction properties.
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Jacobian for Parameter Fitting

During fitting of material parameters p = {A., a.} through minimization of

Equation 4.10, we need to compute the Jacobian of the deformed vertex positions

w.rt. the parameters, ie., J = 5—9: in each iteration of the Levenberg-Marquardt

algorithm.

Given external forces F and initial positions x,, the deformed positions under
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the linear co-rotational elastostatic problem [Miiller and Gross 2004 ] are

x=K"'(F+KYx,), (A1)

withK =) [RKR!] andK =) [RK,],.

Here . . .|, denotes the assembly of the submatrix of the e-th element into the com-
plete stiffness matrix. The Jacobian w.rt. each parameter p; € {1.,a.} can then

be computed as

_ oK™ (F+K'x,) + K™ oK (A.2)
Ji= Op; o Op; o 2
_OK™! _OK___
with = -K'—K™.
8pi ap,

Note that we do not compute the inverse of K. Instead, we compute a sparse
Cholesky factorization, and then use this factorization many times for solving the
linear systems above. Recall the expression for the (unwarped) per-element stiff-

ness matrix in Equation 4.8. The remaining terms are defined as:

g;( = [V.R.BGB.R;] , 21; = [V.R.B;GB,] ,
gf = [V.R.B/HB.R!] , gf = [V.RB{HB,], . (A3)

In case some nodes are constrained not to deform (e.g., when the bottom of the
captured objects is fixed), their known positions move to the right-hand side in

Equation A.1, and the Jacobians must be slightly modified.
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Voronoi, Power Diagrams, and their Duals

In this section, we review Voronoi and power diagrams and their duals in R?
and summarize how we can easily compute them using a convex hull algorithm in
d + 1 dimensions. While we keep the description of the algorithm general, we fall

back to the 3D-case (d = 3) when discussing robustness aspects.
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B.1 VORONOI AND POWER DIAGRAMS

Voronoi diagrams are named after mathematician Georgy Voronoy who first
described them in their general form [1908]: GivenasetP = {p,,...,pa} of
n distinct points (called sites) in a bounded, convex region Q C R?, the corre-
sponding Voronoi diagram VD divides Q into n convex regions (called Voronoi

cells), each consisting of all points closest to a particular site

VD(p;) = {q€Q:Vp; #p;:dlq,p) <d(q,q)} (B.1)

where d(a, b) denotes the Euclidean distance between a, b € R”.

Voronoi diagrams under more general distance metrics and for more general
objects than points have been developed, among which power diagrams PD are
most similar to the original diagrams: given a sphere s C RY with center p and
radius r, the power p of a point q w.r.t. s is given by d*(q, p) — r*. The power metric
allows a simple geometric interpretation for q outside of s: p is the squared length
of the line segment from q and a point tangent to s. For points at arbitrary position,
the power of q is positive if q is outside, zero if on, and negative ifinside s. Formally,

givenasetS = {s,,...,s,} of n distinct spheres, the power diagram is defined by

PD(s;) = {q €O :Vs;#s; :p(q,s:) < p(q, s,-)} (B.2)

Note that the power cell corresponding to a sphere s can be empty if s is con-

tained in the union of the balls bounded by the remaining spheres. This condition,
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however, is not sufficient [ Aurenhammer 1987].

B.2 DuAL CORRESPONDENCE TO CONVEX HULLS

As first described by Brown [1979] and later refined by Edelsbrunner and col-
leagues [1986], a Voronoi diagram in R? can be computed using a transforma-
tion to the d + 1 dimensional space and a convex hull algorithm therein. All rele-
vant properties of Voronoi diagrams naturally carry over to power diagrams as de-
scribed by Aurenhammer in [1987], which allows a natural extension of Brown’s
construction to power diagrams also. Because power diagrams fall together with
Voronoi diagrams if all radii are equal, we only discuss Aurenhammer’s construc-
tion here. Setting all radii to zero, we directly get the construction for Voronoi
diagrams.

“Lifting” from R? to R?™: The construction relies on the bijective mapping

IT of the power of a sphere s = (p, r) in R? to a hyperplane in R4

II(s) : x4y, = 2px — p* + 1 (B3)

wherex = (x,,...,%;), and stems from the observation that the power distance
of a point q w.r.t. s is given by the difference of the segments between q and its ver-
tical projections q’ and q” onto the paraboloid x;;, = x* and I1(s), respectively.
From this observation, it follows that the vertical projection of the intersection
II(s;) N II(s;) onto R? separates the points closest to s; from those closest to s;

under p. Hence, we are interested in the vertical projection of the boundary of the
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intersections of all upper halfspaces delimited by these hyperplanes.
Duality in R%": Using geometric duality, we map each hyperplane k in its gen-

eral form x;,, = ax + ag4y, witha = (a,, . . ., ag) to a point in dual space

A(h) = <;a, —adﬂ) , (B.4)

thereby recasting our upper halfspace intersection as a lower convex hull problem
in dual space. A is known as the polarity function and the resulting point as pole.
Concatenating our “lifting” and duality transforms, we directly get the dual set S

of poles

A(T1(s)) = (p,p* — 1) = (p, hp) (B.s)

on which we compute the convex hull CH. The boundary of CH naturally splits
into a lower (part facing the R? hyperplane) and an upper part and the vertical
projection of the lower boundary (ignore the d + 1-th component of each point),
falls together with the regular triangulation R7 dual to PD.

To get the power diagram from R7, we map the result back to primal space.
While the combinatorial part is straightforward (vertices map to cells, faces to
edges, edges to faces, and cells to vertices), the vertex positions need a careful treat-
ment. To this end, we fall back onto the 3D case (d = 3) considered here and give
geometrically robust formulas for both the Voronoi and power diagram case.

Circum- and Orthospheres [ Shewchuk 1997; Schewchuk 2009]: Given four

dual 3D points with their heights (a, h,), (b, i), (¢, h¢), and (d, hq), delimiting a
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tetrahedron, the corresponding orthosphere center o and squared radius , are

(ha — hd)ll X v+ (hb — ]’ld)V X t+ (]’lc — hd)t Xu
1V

(B.6)

and

(0d)* + (ha — &) (B.7)

whereu = b—d, v = ¢ —d,t = a — d, and V denotes the volume of the
tetrahedron.

In the Voronoi case, where all radii and, hence, all heights are zero, we compute
the circumsphere center ¢ and radius r. using

t*(u X v) + u*(v X t) + v*(t X u)
nV

d+ (B.8)

and

[|t(u x v) + (v X t) + v*(t X u)H

v (B.9)

All of the above constructions can be made robust using Shewchuk’s adaptive
predicates [1997]. For convex hull computations, we suggest using Clarkson’s

dynamic algorithm [1993].
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