
Interactive Design of Stylized Walking Gaits for Robotic Characters
MICHAEL A. HOPKINS∗, Disney Research, USA
GEORG WIEDEBACH∗, Disney Research, USA
KYLE CESARE,Walt Disney Imagineering R&D, USA
JARED BISHOP,Walt Disney Imagineering R&D, USA
ESPEN KNOOP, Disney Research, Switzerland
MORITZ BÄCHER, Disney Research, Switzerland

Fig. 1. Stylized gaits designed with our interactive procedural animation technique. An adult-sized humanoid robot walks with a casual style in
sim (left). Controller reference trajectories for planned Center of Mass (white) and Center of Pressure (teal) are rendered on the ground plane along with
anticipated footholds. A small-scale, dino-inspired character walks and turns in sim (center). The physical Groot robot walks along a user-defined path (right).

Procedural animation has seen widespread use in the design of expressive
walking gaits for virtual characters.While similar tools could breathe life into
robotic characters, existing techniques are largely unaware of the kinematic
and dynamic constraints imposed by physical robots. In this paper, we
propose a system for the artist-directed authoring of stylized bipedal walking
gaits, tailored for execution on robotic characters. The artist interfaces with
an interactive editing tool that generates the desired character motion in real-
time, either on the physical or simulated robot, using a model-based control
stack. Each walking style is encoded as a set of sample parameters which
are translated into whole-body reference trajectories using the proposed
procedural animation technique. In order to generalize the stylized gait over
a continuous range of input velocities, we employ a phase-space blending
strategy that interpolates a set of example walk cycles authored by the
animator while preserving contact constraints. To demonstrate the utility of
our approach, we animate gaits for a custom, free-walking robotic character,
and show, with two additional in-simulation examples, how our procedural
animation technique generalizes to bipeds with different degrees of freedom,
proportions, and mass distributions.

CCS Concepts: • Computing methodologies → Procedural animation;
Physical simulation.

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/3658227

Additional Key Words and Phrases: procedural animation, optimal control,
robotic characters

ACM Reference Format:
Michael A. Hopkins, Georg Wiedebach, Kyle Cesare, Jared Bishop, Espen
Knoop, and Moritz Bächer. 2024. Interactive Design of Stylized Walking
Gaits for Robotic Characters. In . ACM, New York, NY, USA, Article 137,
15 pages. https://doi.org/10.1145/3658227

1 INTRODUCTION
While humanoid robotics is an evolving field, a number of groups
have demonstrated stable, capable walking on a variety of hardware
platforms. Despite this progress, stylized walking remains a chal-
lenging problem for physical robots. This is largely due to a lack
of authoring tools that provide artists with fine-grain control of
a robot’s motion while respecting the inherent limitations of the
physical system.

The field of physics-based character animation shares a common
goal of enabling characters to perform expressive motions that obey
the laws of physics.While recent imitation learning approaches have
led to impressive results, the current focus is rather on skill than
style, and existing techniques do not allow artists to directly author
content. Moreover, physical robots are subject to actuator limitations
and model complexities commonly unaddressed by these techniques.
As a result, the expressivity and believability of animations that we
can achieve on physical robots often lags behind associated results.

Procedural animation of robotic characters is challenging for two
reasons: First, walking gaits must satisfy the kinematic and dynamic
constraints inherent to whole-body locomotion. Second, walking
gaits vary as a function of the character’s velocity, and an authored

1

HTTPS://ORCID.ORG/0009-0003-3365-8415
HTTPS://ORCID.ORG/0009-0006-1571-0533
HTTPS://ORCID.ORG/0009-0006-9068-1787
HTTPS://ORCID.ORG/0009-0000-3185-6205
HTTPS://ORCID.ORG/0000-0002-7440-5655
HTTPS://ORCID.ORG/0000-0002-1952-1266
https://doi.org/10.1145/3658227
https://doi.org/10.1145/3658227

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Hopkins et al.

style must generalize to a continuous range of velocities for forward
and reverse walking, turning, strafing, etc.
To address these challenges, we aim to provide animators with

an easy-to-use gait editor that limits the achievable design space to
motions that satisfy critical feasibility constraints, while simultane-
ously exposing a highly expressive set of animation parameters that
allow artists to design a wide range of periodic gaits, including asym-
metric walk cycles (e.g., a stylized limp for an injured character). To
this end, we propose an interactive, procedural animation technique
that interfaces directly with a model-based control stack, enabling
expressive walking for simulated and physical robotic hardware.
Compared to other procedural animation approaches, it is tailored
to the specific needs of designing stylized gaits for bipedal robotic
characters. Using a custom, constraint-aware interpolation scheme,
our system produces omnidirectional walking styles over a range
of velocities from a small sample set of authored walk cycles.
As we demonstrate with three robotic characters, artists can au-

thor gaits for bipeds that walk along an arbitrary path while express-
ing a custom style, e.g., a happy or a sneaky walk, taking velocity
commands from a joystick as input (Fig. 1). The three characters
vary in proportions, mass distribution, and number of degrees of
freedom. We interface with an existing robotic character [Panzarino
2021] to demonstrate direct authoring on hardware, and show how
quickly an artist can design character-specific stylized cycles with
additional in-simulation results on two realistic robot models.

The primary contribution of our work is the interactive authoring
workflow enabled by the tightly-integrated gait editor, procedural
animation, and control strategy. In contrast to related work, our
technique is entirely real-time and does not require offline trajectory
optimization or a training step. As a result the proposed system can
be used to author content directly on the robot, enabling interactive
iteration of a target walking style. The authors are not aware of
an existing alternative that permits real-time editing of stylized
gaits on physical robots with the level of detail presented by the
proposed system, which supports diverse gait timings, upper-body
motion, heel/toe behavior, and style variation over a continuous
range of velocities. This is only made possible by combining diverse
techniques from the fields of procedural animation and humanoid
robotics.

2 RELATED WORK
Computer Animation. Skeletal animation, keyframing, and pro-

cedural animation are widely used techniques to author artistic
motions for virtual characters [Multon et al. 1999]. Data-driven
approaches have also been used to generate stylized motions, given
a functional target and style reference [Grochow et al. 2004]. Prior
work on the procedural blending of gait references from motion
capture has shown that it is possible to blend gaits with different
timings and walking paths [Holden et al. 2017; Kovar and Gleicher
2003]. Our work employs similar concepts to blend diverse walk
cycles, e.g. mapping time to a monotonically-increasing parameter;
however, while our method belongs to the category of procedural
animation techniques, standard methods are not directly applicable
in the robotics domain, as they don’t account for the physics of the
robot.

Physics-based Characters. Physics-based character animation takes
into account the dynamics of a character, mapping high-level con-
trol inputs to low-level actuation torques [Hertzmann and Zordan
2011]. Pioneering work focused on model-based approaches, craft-
ing custom controllers for walking and other tasks [Coros et al. 2010;
Hodgins et al. 1995; Lee et al. 2010]. Work by Karim et al. [2013]
demonstrated a pipeline for generating stylized procedural mo-
tions for legged creatures in a simulated environment, and Zhao et
al. [2005] developed an interactive user interface for prototyping
sports animation.
More recently, learning-based approaches have started to domi-

nate. These methods often train policies to imitate desired motion
using Reinforcement Learning (RL) [Lee et al. 2021; Peng et al. 2017;
Won et al. 2022]. While early methods require reward engineering,
recent techniques combine RL with adversarial approaches to ex-
tract skills from unstructured motion data [Peng et al. 2022; Yao et al.
2022a]. Applying such techniques to animate robots is a promising
research direction but challenging for interactive and precise full-
body authoring of content directly on hardware as addressed in this
paper.

Animation in Robotics. While at first glance similar to physics-
based character animation, the animation of physical robots is bru-
tally unforgiving with regards to modeling assumptions and sim-to-
real gaps. Specifically, motions that are executed on a physical robot
are required to be robust to changes in the environment (e.g. uneven
ground, varying friction), noisy and imperfect state and ground
contact estimation, and must also respect the physical limitations
of the robot (e.g. actuator speed and torque curves).
Robustness to disturbances is traditionally achieved through

closed-loop model predictive control [Neunert et al. 2016; Wieber
2006] or through high-level feedback such as gait timing and foothold
adjustments [Griffin et al. 2017; Kryczka et al. 2015]. The vast major-
ity of legged robotics research has focused on functional locomotion,
where the robot is given high-level velocity commands and the gait
style is hand-crafted for efficiency and robustness [Apgar et al.
2018; Nishiwaki et al. 2002; Xi and Remy 2014; Zhou et al. 2022].
In contrast, we seek to produce walking gaits that are stylized and
not purely functional. There has been effort targeted at producing
robotic gaits that mimic human walking from motion capture using
model-based control [Ames 2014; Dariush et al. 2008]. While the
resulting gaits are not purely functional, they do not provide the
artistic control that we seek.

Recent work has used RL approaches to produce expressive and
functional walking motions for legged robots. Using domain ran-
domization, these systems can be made robust to modeling uncer-
tainties while exhibiting a variety of gaits [Siekmann et al. 2021],
and in some cases allowing for online adjustment of functional gait
parameters such as step height and speed [Margolis and Agrawal
2022]. Others can extrapolate walking styles from motion capture
or video performances [Bohez et al. 2022; Nakaoka et al. 2007; Peng
et al. 2020; Sok et al. 2007; Yao et al. 2022b]. While these techniques
yield impressive results, they require training time and, therefore,
cannot provide the animator with immediate feedback. This makes
them unsuited for an interactive workflow as we target here.

2

Interactive Design of Stylized Walking Gaits for Robotic Characters Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Fig. 2. Walking gait design and execution. An artist authors walking styles by defining sample parameters at key walking velocities using a graphical
animation editor (left). The sample parameters for each style are translated into dynamically feasible whole-body motion using a procedural animation
technique that runs on the physical robot (right). The robotic character walks in the desired style, tracking the commanded gait velocity from a joystick input.

Graphical Gait Editing. Yin et al. [2007] demonstrated stylized
gaits in simulation using a method where control parameters are au-
thored using a custom GUI or extracted via motion capture. Boston
Dynamics have published online videos of highly-dynamic chore-
ographed robotic locomotion. In a blogpost [Ackerman 2021] it
was disclosed that they use a custom software, “Choreographer”,
which allows for dance sequences to be authored. However, their
exact approach remains undisclosed and proprietary. Similar to the
presented work, Nakaoka et al [2010] developed an authoring tool
for bipedal motion design, taking as input a set of desired tasks
and producing a dynamically-feasible reference trajectory for the
physical robot. While this approach supported stylized stepping
behaviors, each step was individually keyframed. Here, we focus
on procedurally-generated, cyclic walking gaits that vary smoothly
over a continuous range of velocities.

3 OVERVIEW
Fig. 2 includes a high-level block diagram of our proposed procedural
animation technique. Our objective is to design a system that enables
a bipedal robot to walk in a rich variety of artist-directed styles
while tracking an arbitrary planar velocity command, v (see Sec. 4.1,
Path Frame). Inspired by animation and game authoring tools, our
framework includes an interactive gait editor that allows an artist
to design target gait cycles for robotic characters at key walking
velocities. The engine interpolates these gait "samples" using a phase-
space blending strategy that produces smooth variation of the target
style over a continuous range of input velocities. Each sample, 𝑆 ,
is defined by a set of parameters, 𝚷𝑆 , which prescribe the desired
kinematic motion of the robot over a two-step cycle at a given
velocity, v𝑆 . These include step timings, animation curves, and
stance attributes. The target walk is executed by a real-time gait
planner, that is parameterized on the blended sample parameters, 𝚷,
and tracked using the model-based control stack described in Sec. 7.
A unique aspect of our gait planner, when compared to other

robotic systems, is the high-level of expressiveness afforded by a
rich set of gait parameters. As described in Sec. 4.3, the gait param-
eter vector, Π, encodes the salient features of the desired walking
motion, for example the timing and shape of each swing foot trajec-
tory. The parameter space is designed such that it is impossible to
violate certain kinematic constraints imposed by the planner. This is
accomplished by enforcing suitable limits and boundary constraints

on animation curves and through an appropriate choice of variables.
In general, the parameter vector is expected to vary smoothly over a
range of input velocities; however, the planner is designed to permit
discrete parameter changes in the case of live editing.
The proposed gait editor renders a 3D view of the character

tracking the authored walk style using a dynamic simulation of
the robot hardware running the full model-based control stack. By
leveraging real-time simulation and control during the design phase,
our system provides instantaneous feedback to the artist regarding
the expected hardware performance, allowing the author to test
stylized walking gaits using a gamepad to command the robot’s
velocity. Additionally, this proposed editor can be used to update
and refine gaits directly on the robot hardware, which runs an
identical control stack.

The remainder of the paper is organized as follows: Sec. 4 provides
an overview of the proposed Gait Planner, including a detailed
description of the selected animation parameters and state machine
used to produce kinematic reference trajectories. Sec. 5 describes the
Gait Sampler, which selects and interpolates authored walk cycles
as a function of velocity, and Sec. 6 discusses a custom, interactive
gait editor used to author gaits via the proposed animation method.
For tracking the resultant gaits on hardware, Sec. 7 describes the
selected Model-Based Controller and corresponding State Estimator
which estimates the robot’s state from sensor measurements. Finally,
Secs. 8 and 9 present simulation and hardware results on multiple
robotic characters, along with our conclusions.

4 GAIT PLANNER
The proposed animation engine targets the general class of bipedal
robots that can be modeled as articulated rigid body systems. As-
suming 𝑁 joint coordinates and 6 floating-base (or root) coordinates,
the robot configuration is defined as q ∈ R𝑁+6 and the full state is
given by s = [q⊤ ¤q⊤]⊤.
Referring to Fig. 2, we aim to design a procedural Gait Planner,

𝑔, that maps a time-varying, planar input velocity, v(𝑡), to a vector
of Cartesian and joint-space reference trajectories, r(𝑡), that will
enable omnidirectional walking on the target robot when resolved
by a whole-body controller. The input/output behavior of such a
planner can be formalized using the following mapping function,

r(𝑡) = 𝑔(v, s,Π, 𝑡) . (1)

3

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Hopkins et al.

Here we assume the gait planner is provided the current desired
velocity command and estimated robot state at each time step. The
planner is further parameterized by a vector of animation param-
eters, 𝚷, that encode the desired posture, step timing, swing foot
motion, heel-toe behavior, arm motion, and other salient features
of an expressive walking gait.
In the presented system, the planner output vector includes the

desired pelvis (root) height, pelvis rotation, left and right foot poses,
and upper body joint coordinates (e.g. arm, neck, spine, tail angles),
i.e.

r(𝑡) =
[
𝑧pelvis 𝜽⊤pelvis p⊤foot,l p⊤foot,r q⊤upper

]⊤
. (2)

Here we use the symbols, 𝑧 and 𝜽 , to denote a z-axis translation
and quaternion rotation, while, p = [x⊤ 𝜽⊤]⊤, denotes a 6-DoF
pose vector with translation, x ∈ R3. The left and right foot frames
are defined at the geometric center of each sole, while the pelvis
frame is assumed to be attached to the root link using an 𝑥-forward,
𝑧-up convention. All reference poses are defined with respect to an
inertial origin frame which also follows a 𝑧-up convention.

While the planner computes the desired upper-body state, qupper,
in joint-space, the lower-body reference motion is prescribed in
Cartesian coordinates for compatibility with task-space control
strategies commonly employed among walking robots. This task-
space representation also draws parallels to character animation
rigs, which often employ pelvis (root) and foot IK solvers to animate
the legs during walking.

Note that the reference does not specify a desired horizontal pelvis
translation, [𝑥pelvis 𝑦pelvis]⊤. The pelvis translation is strongly cor-
related with the center of mass (CoM) dynamics of the robot, which
are critical for balance. As described in Sec. 7, the proposed method
relies on a model predictive controller to stabilize the CoM dynam-
ics subject to the physical contact constraints. The optimized CoM
translation is appended to the vector of planner outputs, r(𝑡), which
are tracked using an inverse dynamics-based whole-body controller.
In general, we have found that automating the horizontal motion of
the pelvis in this manner has little impact on the perceived style of a
gait, and typically leads to more natural looking walking compared
to manual curve editing.
The following subsections detail the implementation of the pro-

posed planner. We begin with adopted conventions, followed by
a description of the nominal motion planning algorithm enabling
omnidirectional walking, and conclude with an overview of the
animation parameters used to author stylized gaits.

4.1 Conventions
Walk Cycle. A bipedal walking gait is typically defined by al-

ternating steps segmented by a double support phase, i.e. a time
interval where both feet are in contact. This excludes flight phases
as in jogging or running gaits. Fig. 3 illustrates the concept of a
two-step walk cycle. The robot is assumed to progress through two
complete steps, with periodic motion of the feet, pelvis, and upper
body, e.g. arms, neck, and spine. In the proposed framework, the
walk cycle begins with a left liftoff (𝐿𝐿𝑂) event as the character tran-
sitions from double support to the left swing phase. This is followed
by a left touchdown (𝐿𝑇𝐷), right liftoff (𝑅𝐿𝑂), and right touchdown

(𝑅𝑇𝐷) event, each corresponding with the start of a new contact
phase. When walking at a constant velocity, the gait is assumed to
be periodic, and the cycle ends at the following 𝐿𝐿𝑂 event when
the robot returns to the initial configuration having translated some
distance determined by the cycle period, 𝑇𝑆 , and gait velocity. In
the proposed planner, the associated event times, 𝑡𝐿𝐿𝑂 , 𝑡𝐿𝑇𝐷 , 𝑡𝑅𝐿𝑂 ,
and 𝑡𝑅𝑇𝐷 , are derived from a subset of animation parameters which
determine the start and end of each swing interval as described in
Sec. 4.3, Time Intervals.

LLO LLO + TSLTD RLO RTD
Left Swing (LS)

Two-Step Walk Cycle (CY)

Right Swing (RS)

Fig. 3. Two-step walk cycle. The gait transitions through four contact
events during each cycle: left liftoff (𝐿𝐿𝑂), left touchdown (𝐿𝑇𝐷), right
liftoff (𝑅𝐿𝑂), and right touchdown (𝑅𝑇𝐷). For the purposes of this paper,
the two-step cycle is defined such that it starts and ends at 𝐿𝐿𝑂 .

Path Frame. While it is common to animate periodic walk cycles
at constant speed, the goal of the proposed planner is to track an ar-
bitrary, time-varying input velocity, enabling a robot to move freely
about an environment. By convention, the commanded velocity
vector, v = [¤𝑥 ¤𝑦 ¤𝜃]⊤, is expressed in body coordinates, where ¤𝑥 , ¤𝑦,
and ¤𝜃 represent the desired forward, lateral, and angular velocity in
the horizontal plane, respectively. The integral of the input velocity
represents the desired walking path of the biped. Accordingly, we
define a path frame, whose coordinates are given by the integral
of the input velocity. Fig. 4 includes an illustration of two walking
paths, at both a constant and variable velocity. By our convention,
the 𝑥-axis of the path frame is aligned with the front of the robot and
the 𝑦-axis to the left. The path frame coordinates are then given by
the planar pose, pv = [𝑥 𝑦 𝜃]⊤, where the non-bolded 𝜃 represents
the robot’s 𝑧-axis rotation, or yaw, relative to the origin frame.

x

y

Fig. 4. Example walking paths with sampled footholds. The path frame,
P, with x-axis in red and y-axis in blue, is defined as the integral of the gait
velocity. The path frame history (solid line) illustrates the past walking path
relative to the inertial origin frame, O, while the extrapolated trajectory
(dotted line) defines the predicted walking path. The planner derives the
upcoming footholds (white) by sampling the predicted path frame at the
midpoint of each upcoming foot contact interval. The achieved footholds
(black) are fixed in place following each step at the corresponding touchdown
event.

4

Interactive Design of Stylized Walking Gaits for Robotic Characters Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

4.2 Motion Planning
To plan the reference motion for stylized gaits, the proposed method
partitions the computed trajectories into two components:

• a nominal component of motion derived from the desired
input velocity, v, satisfying the basic kinematic and timing
constraints associated with the walking task

• a stylized component of motion derived from the vector of
animation parameters, 𝚷, that encodes the gait expression

Applying this decomposition to the reference states, r(𝑡), as de-
fined in Eq. 2 we have

𝑧pelvis = 𝑧
v
pelvis + 𝑧𝚷pelvis

𝜽pelvis = 𝜽v
pelvis𝜽

𝚷

pelvis

pfoot,𝜇 = pv
foot,𝜇 ⊕ p𝚷foot,𝜇 ∀𝜇 ∈ {𝑙, 𝑟 }

qupper = qv
upper + q𝚷upper,

(3)

where the superscripts, v and 𝚷, are used to denote the nominal
and stylized components of motion, respectively. Note that each
reference foot pose is given by the composition of the nominal and
stylized foot pose. Here, the pose composition operator, ⊕, defines
the rigid body transform, p𝐴 ⊕ p𝐵 = [x𝐴 + 𝜽𝐴x𝐵, 𝜽𝐴𝜽𝐵]𝑇 . This is
equivalent to expressing the stylized foot pose in a moving reference
frame defined at the nominal foot coordinates.
All gait trajectories are evaluated in real-time, and the final ref-

erence state is updated at a rate of 125 Hz in our experiments. The
remainder of this subsection describes the computation of the nomi-
nal reference states, while Sec. 4.3 discusses the choice of animation
parameters and the resulting stylized reference.

Footstep Plan. The planner relies on a finite state machine to
handle transitions between double support and swing phases. To
compute the nominal left and right foot trajectories during each
contact phase, we first evaluate a desired footstep plan from the
predicted walking path. Given the current input velocity, the motion
planner extrapolates the walking path from the current path pose
along a simple arc assuming zero acceleration. As illustrated in Fig. 4,
a pair of upcoming footsteps is generated for each successive two-
step cycle, 𝑘 , by sampling the predicted path pose at appropriate
foothold times, 𝑡𝑘foothold,l and 𝑡

𝑘
foothold,r, and applying a nominal

stance transform for each foothold side such that

p𝑘foothold,l = pv
(
𝑡𝑘foothold,l

)
⊕ pstance,l

p𝑘foothold,r = pv
(
𝑡𝑘foothold,r

)
⊕ pstance,r .

(4)

Here pstance,l and pstance,r are constant planar poses expressed in
the walking path frame, representing the nominal translation and
rotation of each foot during stance. The stance poses contribute to
the overall style of the walk and are determined by a subset of the
planner animation parameters as discussed in Sec. 4.3, Attributes.

A natural choice for 𝑡𝑘foothold is the midpoint of the time interval
when the foot will be in contact with the foothold, e.g. 𝑡𝑘foothold,l =
(𝑡𝑘+1
𝐿𝐿𝑂

− 𝑡𝑘
𝐿𝑇𝐷

)/2. During the swing phase, the upcoming foothold
is re-evaluated at each time step to account for changes in the input
velocity. At the time of touchdown, the target foothold is fixed in

place for the new support phase. In the event that the upcoming
foothold overlaps the current support foot, the target position is
projected to a safe stepping region using a conservative heuristic.
Given the initial pose of the target foothold as expressed in the
support foot frame, we select one of three regions in front, behind,
or to the side of the support foot and clip the target position to
nearest point on the boundary.

Nominal Support/Swing Foot Trajectories. The nominal foot tra-
jectories are computed to satisfy non-sliding contact constraints
during walking. With each step, the swing foot breaks contact with
the current foothold at liftoff and makes contact with the upcoming
foothold at touchdown. During the support phase, the foot reference
pose is latched to the foothold pose evaluated at the last touchdown,
i.e. pv

foot,l (𝑡) = p𝑘−1
foothold,l. With each step, we compute a nominal

swing foot trajectory that interpolates from the latched foothold to
the upcoming foothold over the duration of the swing interval. Split-
ting the reference trajectory into linear and angular components,
we have, for the left foot example,

xv
foot,l (𝑡) = (1 − 𝛼 (𝑡)) x𝑘−1

foothold,l + 𝛼 (𝑡)x
𝑘
foothold,l (5)

𝜽v
foot,l (𝑡) = 𝑆𝐿𝐸𝑅𝑃

(
𝜽𝑘−1
foothold,l, 𝜽

𝑘
foothold,l, 𝛼 (𝑡)

)
. (6)

Here 𝛼 (𝑡) is a cubic interpolation parameter that increases from 0 to
1 over the duration of the step with zero initial and final velocity, i.e.
¤𝛼 (𝑡𝐿𝐿𝑂) = ¤𝛼 (𝑡𝐿𝑇𝐷) = 0. Note that, like the footholds, the nominal
swing foot trajectory has zero height and lies in the ground plane.
The vertical swing trajectory is determined entirely by the animation
parameters as described in Sec. 4.3, Function Curves.

Nominal Pelvis and Upper-Body Trajectories. The nominal pelvis
rotation, 𝜽v

pelvis, is defined such the the pelvis 𝑧-axis remains vertical,
while the horizontal axes are aligned with the current path frame
rotation, producing smooth pelvis yaw during turning. The pelvis
height and upper body joint trajectories are specified directly by
the stylized reference; thus, we define 𝑧v

pelvis = 0 and qv
upper = 0.

4.3 Animation Parameters
While a biped’s walking gait may vary dramatically as a function
of speed, emotion, or personal style, the fundamental mechanics
and constraints remain the same. If we consider the subspace of all
dynamically feasible walking gaits for a specific biped, the achiev-
able styles are determined by the salient differences among those
gaits. This motivates the need for design tools that abstract the
common complexities of walking gaits and allow artists to focus on
the critical features that distinguish one style from another. This
is especially important when designing gaits for physical robots,
as it is generally impossible to ensure dynamic feasibility of an
animated motion without automating some portion of the design
process or post-processing the motion, resulting in motions that
can significantly deviate from the artistic intent.

We propose an expressive gait parameterization that aids the rapid
design of feasible walk cycles for robotic characters. Our goal is to
design a set of gait parameters, Π, that encode the salient features
of a stylized gait. Ideally, a suitable set of gait parameters should
strike a balance between several competing design objectives:

5

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Hopkins et al.

• maximizing the expressive range of valid gaits
• minimizing the number of design parameters
• minimizing the expected design time

To be deployed to a physical robot, an animated walk cycle must
also satisfy certain kinematic and dynamic constraints. Referring to
Fig. 3, the contact events should follow the appropriate gait sequence
and the soles of the feet should never penetrate the ground plane or
slip during contact. As a necessary condition for dynamic feasibility,
the CoP should also lie inside the active support polygon at all times.

The proposed parameterization includes three data types that can
be edited during the design phase: time intervals, attributes, and
function curves.

Time Intervals. Time intervals are defined by a min and max
value relative to the start of the walk cycle (refer to Sec. 4.1, Walk
Cycle). Tab. 1 lists the selected intervals which include the full
two-step cycle and the left and right swing intervals. Note that
each configurable limit maps to a contact event in the walk cycle.
The min values of the CY and LS intervals are clamped to 0. We
also constrain the limits to satisfy the event ordering illustrated in
Fig. 3, i.e. 𝑡𝐿𝐿𝑂 < 𝑡𝐿𝑇𝐷 < 𝑡𝑅𝐿𝑂 < 𝑡𝑅𝑇𝐷 < 𝑡𝐿𝐿𝑂 +𝑇𝑆 , and enforce a
lower bound on the distance between each event time based on the
minimum permissible durations of the single and double support
phases. This effectively limits the domain of expressible gaits strictly
to walking.

Table 1. Time Intervals for a Gait Sample

Name Description (Min, Max)

CY The two-step cycle interval (𝑡𝐿𝐿𝑂 , 𝑡𝐿𝐿𝑂 +𝑇𝑆)
LS The left swing interval (𝑡𝐿𝐿𝑂 , 𝑡𝐿𝑇𝐷)
RS The right swing interval (𝑡𝑅𝐿𝑂 , 𝑡𝑅𝑇𝐷)

Function Curves. Function curves are time-varying trajectories
that parameterize the stylized reference states for the animated walk
cycle, i.e. 𝑧𝚷pelvis, 𝜽

𝚷

pelvis, p
𝚷

foot,l, p
𝚷

foot,r, and q𝚷upper. Tab. 2 lists the core
functions used to animate a stylized walk. Each curve is defined on a
specific time interval, i.e. the periodic cycle interval, CY, or discrete
swing intervals, LS or RS as illustrated in Fig. 6. The functions are
parameterized as cubic splines to enable traditional curve editing,
where an artist shapes the function using knot position and optional
tangent controls.

Left and right foot translation and rotation curves are defined for
each swing interval, allowing an artist to shape the swing trajectory
during stepping. These parameters define the time-varying reference
pose, p𝚷foot, with respect to the nominal swing foot frame with
coordinates, pv

foot, for each step side. The desired translation is
given by x𝚷foot = x𝚷swing +x𝚷heel-toe. Here x𝚷swing defines the animated
swing trajectory, parameterized by 𝑥 , 𝑦, and 𝑧 curves that span
the time interval from liftoff to touchdown. The initial and final
values of the swing interval function curves are clamped to zero to
ensure that the swing foot trajectory starts and ends at the nominal
liftoff and touchdown pose, assuming a flat foot orientation. The
second term, x𝚷heel-toe, is a translation offset derived from the foot

pitch parameters described below and ensures the contact height
constraints are satisfied during heel-toe walking.
The stylized foot rotation, 𝜽𝚷foot, is parameterized by four ani-

mation angles, (𝜃,𝜓heel,𝜓toe, 𝛾), which represent intrinsic rotations
applied in the listed order about the 𝑧, 𝑦, and 𝑥 axes. Here 𝜃 and 𝛾
determine the yaw and roll of the foot relative to the nominal swing
motion, and are clamped to zero at the swing boundaries. The param-
eters,𝜓heel and𝜓toe, represent pitch rotations applied about the heel
and toe, respectively. Inspired by the "reverse foot lock" rigs used in
character animation, the heel and toe pitch transforms are applied
sequentially, as illustrated in Fig. 5. By enforcing −𝜋

2 ≤ 𝜓heel ≤ 0
and 0 ≤ 𝜓toe ≤ 𝜋

2 , we can ensure that the lowest point on the foot
always remains at or above the ground plane. The corresponding
heel-toe translation offset, x𝚷heel-toe, is derived from the sequential
pitch rotations given the foot length. At liftoff and touchdown, one
of the two pitch parameters is permitted to be non-zero, correspond-
ing to toe or heel contact at the swing boundaries. The transition
to and from the nominal flat foothold pose is automated during the
support phase, as described in Sec. 4.3, Attributes.

Fig. 5. Heel-toe rotation parameters for stylized swing trajectories. Inspired
by common character animation rigs, the foot is animated using two pitch
rotations,𝜓heel and𝜓toe, applied first about the nominal heel position, then
about the resulting toe position. One of the pitch angles must be constrained
to zero at each contact switch event, allowing for either toe or heel contact.

.

The stylized pelvis height, 𝑧𝚷pelvis, is directly parameterized, while

the path frame-relative rotation, 𝜽𝚷pelvis, is prescribed by a set of
Euler-ZYX angles that map to yaw, pitch, and roll. The pelvis curves
are defined on the full two-step cycle interval along with a set of
joint-space function curves that map directly to the upper body joint
trajectories, q𝚷upper. These include curves for each arm, neck, spine,
and/or tail, enabling rich upper body motions. We enforce periodic
boundary constraints on these functions so that the interpolated
trajectories are C1 continuous as the walk cycle loops.

Table 2. Function Curves of a Gait Sample

Interval: Name Description

LS: Foot 𝑥, 𝑦, 𝑧 Left foot swing translation
LS: Foot 𝜃,𝜓heel,𝜓toe, 𝛾 Left foot swing rotation angles
RS: Foot 𝑥, 𝑦, 𝑧 Right foot swing translation
RS: Foot 𝜃,𝜓heel,𝜓toe, 𝛾 Right foot swing rotation angles
CY: Pelvis 𝑧 Pelvis z translation
CY: Pelvis 𝜃,𝜓,𝛾 Pelvis rotation angles
CY: Upper body 𝑞𝑖 Upper body joint angles (e.g. arms)

6

Interactive Design of Stylized Walking Gaits for Robotic Characters Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Pelvis

Left Foot Right Foot

Two-Step Cycle (CY)

Tr
a
n
sl

a
ti

o
n
 [

m
]

Time [s]tLLO tLTD tRLO tRTD tLLO+ Ts

Left Swing (LS) Right Swing (RS)

Fig. 6. Function curves. Example Pelvis 𝑧, Left Foot 𝑧, and Right Foot 𝑧
function curves for a two-step cycle. Pelvis functions are defined on the full
two-step cycle, while left and right foot functions are defined on the left
and right swing intervals, respectively.

.

Attributes. Attributes are configurable constants that affect some
aspect of the walk cycle. The stance splay, width, and x-bias at-
tributes determine the mean angular, lateral, and forward offset
between the left and right footholds relative to the walking path.
Fig. 7 illustrates the effect of each attribute on the nominal stance
pose, pstance, for each foot when the gait velocity is zero. Recall
from Sec. 4.2, Footstep Plan, that the stance poses determine the
placement of the planned footholds with respect to the path frame.
The proposed parameterization enables a wide range of expression
including narrow-stanced, wide-stanced, duck-footed, pigeon-toed,
and asymmetric gaits while preventing the animator from having to
manually define the foothold poses - an otherwise time-consuming
process.

Fig. 7. Stance attributes. The left and right stance poses are shown for a
stationary path frame, P (standing or stepping with zero gait velocity).

As mentioned in Sec 4.3, Function Curves, the proposed parame-
terization includes attributes to automate the foot pitch behavior
during the support phases for heel/toe walking. The artist is pro-
vided two parameters: Δ𝑡𝜓𝐿𝑂

and Δ𝑡𝜓𝑇𝐷
, which determine the dura-

tion of the heel/toe transitions to and from a flat foot configuration
prior to liftoff and immediately following touchdown, respectively.
These terms control how quickly the foot is lifted and planted during
toe/heel-off and heel/toe-strike. Each is capped to a maximum of
50% of the total foothold duration. The planner linearly interpolates
the heel or toe pitch angle to zero over the course of the transition.

5 GAIT SAMPLER
As a character’s walking velocity varies over time, the walk cy-
cle must adapt to accommodate different step timings and/or stride
lengths. Additionally, distinct gait featuresmay emergewith changes
in speed, for example, a more pronounced arm swing or toe-off mo-
tion while walking at a fast pace. As discussed in Sec. 3, we employ

a sample-based design methodology to animate stylized walking
gaits that vary over a continuous range of walking velocities. Here
we define a gait sample, 𝑆 , as a set of gait parameters associated
with a fixed walking velocity, i.e. (Π𝑆 , v𝑆) , that defines a periodic
walk cycle. In the proposed system, an animator designs a complete
walking style by authoring sample walk cycles at set of key walking
velocities, representing forward, reverse, strafing, and turning gaits,
as described in Sec. 5.3.
Referring to Fig. 2, the Gait Sampler computes the set of gait

parameters, Π, that are input to the gait planner by interpolating
the authored gait samples. In order to generalize the sampled walk-
ing style to arbitrary input velocities, it is necessary to define a
method to perform velocity-based interpolation of multiple samples.
This section describes a phase-based blending strategy that relies
on a gait "phase map" to interpolate time-varying parameters that
are constrained based on the contact events. By blending the sam-
ple parameters as opposed to the corresponding joint trajectories,
we can ensure that the resulting whole-body motion satisfies the
constraints imposed on the original samples.

5.1 Phase Map
Here we introduce the concept of a phase map for a two-step walk
cycle. A phase map is an invertible function that maps a generic
gait phase, 𝜙 , to a unique gait time, t, specific to each walk cycle.
The mapping is defined such that the cycle event times, 𝑡𝐿𝐿𝑂 , 𝑡𝐿𝑇𝐷 ,
𝑡𝑅𝐿𝑂 , 𝑡𝑅𝑇𝐷 , and 𝑡𝐿𝐿𝑂 +𝑇𝑆 , correspond to phase values of 0, 𝜙𝐿𝑇𝐷 ,
𝜙𝑅𝐿𝑂 , 𝜙𝑅𝑇𝐷 , and 1. The values for 𝜙𝐿𝑇𝐷 , 𝜙𝑅𝐿𝑂 , and 𝜙𝑅𝑇𝐷 can be
chosen arbitrarily to satisfy 0 < 𝜙𝐿𝑇𝐷 < 𝜙𝑅𝐿𝑂 < 𝜙𝑅𝑇𝐷 < 1. We
select the intermediate phase values, 0.1, 0.5, and 0.6, respectively,
based on typical double and single support durations of a symmet-
ric biped gait. A smooth phase map, Ω(𝜙), is derived by fitting a
monotonic cubic spline to the corresponding phase/time waypoints
as illustrated in Fig. 8.
Now consider the problem of associating a specific gait time,

𝑡𝐴 , from cycle 𝐴, with an "equivalent" gait time, 𝑡𝐵 , from cycle 𝐵.
Using the respective phase maps, Ω𝐴 (𝜙) and Ω𝐵 (𝜙), the solution is
given by 𝑡𝐵 = Ω𝐵 (Ω−1

𝐴
(𝑡𝐴)). Note that this method guarantees that

contact event times, e.g. 𝑡𝐿𝑇𝐷 , will always map to the equivalent
event time in another cycle. This property of the chosen phase map
preserves contact event-based timing constraints when mapping
gait signals from one cycle to another.

5.2 Blending Two Samples
Given two samples,𝐴 and 𝐵, an interpolated parameter set,Π𝐴𝐵 , can
be computed by blending the individual attributes, time intervals,
and function curves according to a desired blend ratio, 𝛼 ∈ (0, 1).
The result is a valid sample associated with an intermediate velocity.
Attributes such as the stance width are interpolated using a simple
alpha blend, i.e.

𝑟 = (1 − 𝛼)𝑟𝐴 + 𝛼𝑟𝐵 (7)

where 𝑟𝐴 and 𝑟𝐵 are the associated sample values. Similarly, the
interpolated time intervals are computed by alpha-blending the
min and max values independently. Because the blend operation
is a convex combination, the ordering constraints imposed on the
sample event times are preserved by the blended outputs.

7

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Hopkins et al.

tLLO

tLTD

tRLO

tRTD

tLLO+ Ts

LLO LTD RLO RTD LLO

Fig. 8. Phase maps. Example phase maps for two gait cycles, 𝐴 and 𝐵,
along with the blended cycle, 𝐴𝐵, for 𝛼 = 0.5.

In order to blend the function curve parameters, we first need to
evaluate the phase map, Ω𝐴𝐵 (𝜙), for the interpolated walk cycle
based on the blended time intervals. Then, the blended function
curve can be evaluated at an abitrary gait time using the following
algorithm:

(1) Compute the equivalent gait phase, 𝜙 = Ω−1
𝐴𝐵

(𝑡).
(2) Compute the equivalent gait time for sample A, 𝑡𝐴 = Ω𝐴 (𝜙).
(3) Compute the equivalent gait time for sample B, 𝑡𝐵 = Ω𝐵 (𝜙).
(4) Evaluate function curve A at 𝑡𝐴 .
(5) Evaluate function curve B at 𝑡𝐵 .
(6) Interpolate the resulting values using Equation 7.
The proposed phase-space blending method shares commonali-

ties with the time warp registration curves presented in [Kovar and
Gleicher 2003], which are evaluated using dynamic time warping
(DTW). Like DTW, we map time to a monotonically-increasing pa-
rameter, 𝜙 , allowing time-correlation and blending of motions with
different timing characteristics. However, while DTW computes
an automatic mapping based on a distance function that compares
animation frames, the proposed method relies on a gait-specific
correlation based on the contact constraint timings for each walk
cycle. As opposed to blending animation frame data (joint/root
states), the proposed gait sampler blends the set of procedural gait
parameters, which are directly constrained by the contact timings.
Overall, registration curve methods are a powerful tool for blending
diverse animations, while the proposed strategy is specific to walk
cycles and ensures that the contact-related kinematic constraints
are satisfied for all blended motions.

5.3 Velocity-Based Sample Interpolation
Using the proposed editor described in Sec. 6, walking styles are
authored by animating 9 independent gait samples corresponding
to the key walking velocities listed in Tab. 3. Given an arbitrary in-
put velocity, v = [¤𝑥 ¤𝑦 ¤𝜃]𝑇 , the sample parameters are interpolated
using a three step process illustrated in Fig. 9. In the first step, we in-
terpolate the forward, reverse, and in place samples by blending the
two nearest neighbor samples based only on the value of ¤𝑥 . Let ¤𝑥𝐴
and ¤𝑥𝐵 represent the velocities of the two nearest forward/reverse

samples,𝐴 and 𝐵. The blend ratio is computed based on the distance
from each sample velocity, i.e.

𝛼 ¤𝑥 = 𝑓soft
(

¤𝑥− ¤𝑥𝐴
¤𝑥𝐵− ¤𝑥𝐴

)
(8)

where 𝑓soft (𝛼) = −2𝛼3 + 3𝛼2 is a cubic polynomial that maps the
unit domain to the unit range but with a first derivative of zero at
both limits. This ensures that there are no discontinuities in the
first derivatives of the blended sample parameters when the input
velocity crosses into a new region of the sample space.

Table 3. Gait Sample Velocities

¤𝑥 ¤𝑦 ¤𝜃
Forward Fast ¤𝑥max 0 0
Forward Slow ¤𝑥slow 0 0
Step In Place 0 0 0
Reverse Slow − ¤𝑥slow 0 0
Reverse Fast − ¤𝑥max 0 0
Left Strafe 0 ¤𝑦max 0
Right Strafe 0 − ¤𝑦max 0
Left Turn 0 0 ¤𝜃max
Right Turn 0 0 − ¤𝜃max

Step In Place

Left Turn

Right Turn

Right StrafeLeft Strafe

Forward/Reverse Turn/Strafe

Forward SlowReverse Slow

Reverse Fast Forward Fast

0

2)

3)

1) x

yn

θn

Fig. 9. Sample interpolation. Three step process for omnidirectional sam-
ple interpolation. In each step the white diamond represents the input veloc-
ity while each black circle represents a different sample velocity mapped to
the relevant blend space. In 1) and 2) we blend the nearest forward/reverse
and turn/strafe samples, respectively. In step 3) we blend the intermediate
results to produce the final interpolated parameter set.

In the second step, we interpolate the turn and strafe samples
based on the values of ¤𝜃 and ¤𝑦. First, we normalize the velocities
based on the maximum values defined in Tab. 3, i.e. ¤𝜃𝑛 = ¤𝜃/ ¤𝜃max and
¤𝑦𝑛 = ¤𝑦/ ¤𝑦max. Then, we compute the equivalent polar coordinates,

𝛽 = atan2(¤𝑦𝑛, ¤𝜃𝑛) and 𝜌𝑛 = min
(√︃

¤𝑦2
𝑛 + ¤𝜃2

𝑛, 1
)
, clipped to the unit

circle. Note that the four turn and strafe samples lie on the unit
circle in this normalized space and map to 𝛽 = 0, 𝜋/2, 𝜋 , and 3𝜋/2.
Similar to the forward/reverse case, we can compute the two nearest
neighbors among the turn/strafe samples and blend them using the
ratio:

𝛼𝛽 = 𝑓soft
(
𝛽−𝛽𝐴
𝛽𝐵−𝛽𝐴

)
(9)

where 𝛽𝐴 and 𝛽𝐵 are the corresponding polar angles of the samples.

8

Interactive Design of Stylized Walking Gaits for Robotic Characters Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Steps 1 and 2 produce a blended forward/reverse sample and
a blended turn/strafe sample, respectively. In the third step, we
blend these two intermediate samples based on the relative norms
of ¤𝑥𝑛 = ¤𝑥/ ¤𝑥max and 𝜌𝑛 . The final blend ratio is given by

𝛼turn-strafe = 𝑓soft
(
𝜌𝑛 ·

(
1 − 𝜂𝑓soft

(
| ¤𝑥𝑛 |

)))
(10)

where 𝜂 ∈ (0, 1) is an adjustable gain nominally set to 0.5. Note that
when ¤𝑥 is zero, the first term in the product fully determines the
ratio at which the turn-strafe sample is blended into the final result.
As ¤𝑥 approaches the maximum forward/reverse velocity, however,
the second term in the product effectively scales the ratio by (1−𝜂)
to reduce the influence of the turn-strafe samples.

6 INTERACTIVE GAIT EDITOR
In the proposed system, gait samples are authored using a custom
graphical user interface that allows artists to design stylized walks
for the proposed animation technique. A screenshot of the user
interface is show in Fig. 2. The application includes a robot visualizer,
style browser, input editor, and sample editor. The visualizer displays
a 3D model of the target robot for visual feedback, and the style
browser allows the user to load and save various walking styles.
The input editor provides an interface to adjust the desired gait
velocity, while the sample editor includes an animation curve editor
and additional controls to modify the gait parameters including
attributes, time intervals, and function curves.

The UI is designed for ease-of-use by animators that are familiar
with popular character animation tools. The gait parameters emulate
common joint and IK controls used in walking character rigs and
were selected in consultation with a professional animator. When
designing a gait, an animator can toggle the application interface
between one of two modes described below.

6.1 Edit Mode
In edit mode, the user can select a desired sample for the current
walking style and edit its parameters. The 3D window displays a
live view of the character walking at the corresponding sample
velocity with the periodic two-step gait cycle computed by our
procedural animation method. The animation is updated in real-
time to reflect changes in the sample parameters. This allows the
animator to quickly visualize the effect of varying the value of an
attribute, time interval, or a knot on a function curve. The visualizer
also provides feedback when the character’s joints approach their
limits by shading the child links red. This allows the artist to catch
potential issues early in the design phase and adjust the sample
parameters to achieve the desired safety margins.

A screenshot of the sample editor is shown in Fig. 10. The function
curves defined in Sec. 4.3 are represented as cubic Hermite splines
and modified using an interface inspired by traditional animation
curve editors. Boundary constraints are enforced at the limits of the
gait cycle and swing intervals to prevent infeasible parameter sets.
For example, when the swing intervals are resized, the knot times
of the associated function curves are also re-scaled to ensure the
swing trajectory remains valid.

Fig. 10. Time interval and function curve editing. Before (top) and after
(bottom) editing the left and right swing intervals. Here the user is alerted
to an error when the animation engine detects that double support duration
is below a minimum threshold after adjusting the intervals.

.

6.2 Test Mode
In test mode, the user can interactively control the character’s walk-
ing velocity using joystick controls. This allows the animator to
inspect the authored style as the gait cycle varies over a range of
continuous input velocities. The animator can also quickly evaluate
and compare walking styles and/or test the controller performance
while expressing a given style to determine if further refinement of
the sample parameters is required.

7 MODEL-BASED CONTROLLER AND ESTIMATOR
To realize the stylized walking gaits on hardware, we employ a
Model-Based Controller (compare with Fig. 2) to track the time-
varying reference motion, r, computed by the Gait Planner. The
purpose of this feedback controller is to account for disturbances
and modeling imperfections in the real world. When deploying the
proposed system to a new robot, the model-based controller is tuned
to accommodate a variety of motions. The control parameters are
then duplicated in the animation authoring/simulation tool, which
runs an identical control stack, and remain fixed during the design
and deployment phase.

Note that the presented control stack is abstracted from the gait
planner and sampler introduced in the above sections. In practice,
the proposed control strategy could be replaced by alternativemodel-
or learning-based controllers designed to track the planned task-
space reference trajectories for bipedal walking.

7.1 Model-Based Controller
The tracking controller utilized for the experiments in Sec. 8 adopts
well-knownmethods from the humanoid robotics field. A model pre-
dictive controller (MPC) similar to [Wieber 2006] plans the Center
of Mass (CoM) reference of the robot over a short preview window
including the expected footholds. The CoM and gait reference states
are tracked using an optimization-based whole-body controller sim-
ilar to [Koolen et al. 2016]. In the following, we provide additional
detail regarding the control stack.

Center of Mass Planner. As discussed in Sec. 4, the gait planner
does not specify a horizontal pelvis translation; instead, we rely
on the MPC formulation detailed in the Appendix (MPC) to plan a

9

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Hopkins et al.

dynamically-feasible, horizontal CoM trajectory given the antici-
pated footholds and step timings computed by the gait planner. The
MPC is formulated as a sparse quadratic program (QP) that jointly
optimizes the horizontal CoM and Center of Pressure (CoP) trajecto-
ries. Fig. 11 includes an example footstep plan with optimized CoM
and CoP trajectories. The MPC is evaluated on each gait planner
update (at a rate of 125Hz), and uses a preview window of 𝑇 = 2𝑠
(or approx. 4 footholds at a gait cycle time of 1s).

Fig. 11. Optimized CoM and CoP. The desired reference trajectories are
computed by themodel predictive controller given desired footstep sequence
and gait timings.

.

Whole-Body Controller. The kinematic and dynamic references
output by the gait and CoM planners are tracked by an optimization-
based whole-body controller that closes the state feedback loop at a
rate of 500 Hz.We rely on joint-space and Cartesian feedback control
to compute desired acceleration and momentum rate of change
objectives that are resolved by a task-space inverse dynamics solver
described in the Appendix (ID). The solver, formulated as a whole-
body QP, resolves the set of task-space objectives by optimizing the
commanded joint accelerations and ground reaction forces subject
to kinematic and dynamic constraints including Coulomb friction
and acceleration limits.
From the inverse dynamics solution, we derive the vector of de-

sired joint torque setpoints, 𝝉 ∈ R𝑁 . We also compute joint velocity
and position setpoints by integrating the optimized accelerations
and clipping the integral based on a maximum error from the mea-
sured quantities. The same joint-level setpoints are computed for
the simulated and physical robot. On the physical character, a hard-
ware abstraction layer transforms the joint setpoints into actuator
commands, while in simulation, the joint positions, velocities, and
torques are tracked directly using PD control with feedforward
torques.

Gait Feedback. If the controller is unable to sufficiently track
the CoM reference, it may be necessary to modify the robot’s gait
to maintain stability. CoM tracking errors may occur in response
to unexpected disturbances, large accelerations in the commanded
velocity, or periodically during the course of walking for certain gait
expressions. Let x̂com and rcom ∈ R2 represent the estimated and
reference CoM positions projected on the ground plane. We employ
three heuristic feedback mechanisms to regulate the CoM error,
x̂com − rcom, in the form of velocity adjustment, step adjustment,
and time scaling.

Velocity and Step Adjustment. The target walking velocity is given
by the sum of the velocity command and a linear velocity offset, i.e.

v∗ = v + [∆⊤
vel 0]⊤. The offset, ∆vel ∈ R2, is computed as a linear

combination of the CoM position and velocity error vectors passed
through a deadband function and low-pass filter with a 0.15 Hz
cutoff. Intuitively, this strategy accelerates the robot in the direction
of a persistent error, buying additional time to recover at the expense
of drift. Likewise, the upcoming foothold position is computed as
the sum of the nominal foothold position and a horizontal step
adjustment, i.e. x𝑘

∗
foothold,l = x𝑘foothold,l + [∆⊤

step 0]⊤, in the case of
a left step. By adjusting the foothold location in the direction of
the CoM error, this strategy aims to place the future CoP in a more
favorable contact region to reduce the error in the next support
phase.

Time Scaling. Because the centroidal dynamics resemble an unsta-
ble inverted pendulum during stepping, it is common for the CoM
to lead or lag the planned reference trajectory. As such, we find that
speeding up or slowing down the CoM reference trajectory is an
effective strategy to reduce the centroidal error for dynamic gaits.
Intuitively, this approach, which we refer to as time scaling, allows
the estimated CoM to "catch up" to the reference, or vice versa. The
proposed controller computes a time scaling rate, 𝜅time ∈ (0,∞),
such that 𝜅time > 1 speeds up the reference, while 𝜅time < 1 slows
it. We consider only the horizontal component of the CoM position
and velocity error projected onto the axis pointing from the current
to the next foothold, 𝜖 and ¤𝜖 . The time scaling rate is computed
as 𝜅time = 𝑒 (𝑘𝑝𝜖+𝑘𝑑 ¤𝜖) , where 𝑘𝑝 and 𝑘𝑑 are experimentally-tuned,
positive feedback gains. To ensure that the kinematic and dynamic
motion tasks remain consistent for the given gait, we time-scale
all reference trajectories in response to the CoM error, effectively
slowing or speeding up the gait to aid stability, while maintaining
the intended kinematic motion.

7.2 Estimator
As defined in Sec. 4, the robot state vector, s, is estimated by a
whole-body state estimator that fuses the robot’s sensor measure-
ments at 1kHz (compare with Fig. 2, State Estimator). The sensor
measurements include the actuator encoder positions and inertial
data from an IMU located on the pelvis (root) link. An Extended
Kalman Filter based on [Solà 2015] is used to estimate the robot’s
root orientation. Relying on leg kinematics, the pelvis translation
is estimated using zero-velocity observations when the feet are in
contact with the ground plane. From the estimated state vector and
rigid body model, we compute all Cartesian and centroidal estimates
required for control.

8 RESULTS
We demonstrate the utility of our modeling on three robots: a small-
scale dinosaur-inspired biped, an adult-sized humanoid, and a child-
sized robot themed as Groot [Panzarino 2021]. Referring to Tab. 4,
these robots were selected to demonstrate the generality of the
proposed approach for animating gaits for bipeds with diverse pro-
portions, mass distributions, and kinematics. While we provide in-
simulation results for the adult-sized and dinosaur-inspired bipeds,
we also demonstrate the viability of the proposed approach on
hardware using a physical copy of the Groot robot along with a
lower-body-only version of the same hardware platform.

10

Interactive Design of Stylized Walking Gaits for Robotic Characters Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Table 4. Key statistics for the different robots.

#Act height (mm) weight (kg)

Groot 25 1155 18.5
Groot Lower Body 10 650 19.3
Humanoid 25 1640 74.5
Dino 20 615 16.9

#Act: number of actuators.

It should be noted that the gaits for each robot presented in this
section were achieved by animating the gait parameters from Sec. 4
only. The underlying control stack presented in Sec. 7 is fixed and
regarded a black box during gait design. All of the simulations in
this section were implemented using MuJoCo [Todorov et al. 2012].
Each robot was modeled using physically plausible actuator sizing,
and the simulation and hardware experiments were collected in real-
time using an Intel i7 computer. Demonstrations of the authored
gaits and experiments are included in the accompanying video.

8.1 Small-Scale Dinosaur Simulation
We used the proposed approach to design two distinct dynamic
gaits for the small-scale dinosaur model shown in Fig. 1: a stylized
"dino gait" and an asymmetric "injured gait". This character features
6-DoF legs with reverse knee joints, a 4-DoF neck with bird-like
kinematics, and a 4-DoF segmented tail with alternating yaw and
pitch joints.

Dino Gait. As illustrated in Fig. 12 (top), the cycle duration of
the dino gait varies significantly across the In Place, Forward Slow,
and Forward Fast samples, with the stepping frequency more than
doubling as the character accelerates from 0 to 0.4 m/s. In addition
to a more natural appearance, this timing variation serves to reduce
the required stride length at high speeds, while maintaining a casual
stepping frequency at slow speeds. Note that all of the samples
also feature symmetric swing intervals. As the neck and tail are
prominent features of this character, most of the authoring time was
spent animating the respective periodic joint trajectories for each
sample. The neck was animated to imitate a typical bird walk, while
the tail animation was inspired by video of a simulated theropod
dinosaur gait [Bishop et al. 2021].

LS

RS

In Place [0 m/s] Forward Slow [0.2 m/s] Forward Fast [0.4 m/s]

TS = 0.95 s TS = 0.65 s TS = 0.45 s

D
in

o
 G

a
it

In
ju

re
d

 G
a
it

Fig. 12. Dinosaur gait timing. The colored regions indicate the time spent
in the left and right swing phase. The radius of each circle represents the
cycle duration. Top: the Dino Gait features symmetric swing intervals with
a decreasing cycle time as the gait velocity increases. Bottom: the Injured
Gait is asymmetric at slow speeds and symmetric at the Forward Fast speed.

Injured Gait. Referring again to Fig. 12 (bottom), the injured gait
features asymmetric swing intervals for the In Place and Forward
Slow samples. When coupled with a positive stance x-bias, the
shorter left swing phase is intended to read as an injury to the
right leg. For the Forward Fast sample, we use identical parame-
ters to the dino gait, allowing the character to blend back to the
symmetric gait at higher speeds.

Push Recovery Experiment. Referring to the accompanying video,
we demonstrate the stability of model-based planning and control
stack by applying external forces to the robot’s pelvis link during
walking. Fig. 13 illustrates the character’s recovery following a 25 N,
1 s forward push as the robot walks at a slow forward velocity. We
can make several conclusions observing the timing and magnitude
of the three gait adjustment strategies discussed in Sec. 7.1, Gait
Feedback.

Fig. 13. Dino push experiment. The shaded area indicates the push in-
terval. The top plot shows the sample activation as the robot adjusts it’s
velocity. The bottom plots show the response of the gait adjustment mecha-
nisms used for recovery.

.

First, we note that time scaling is active during the nominal gait
cycle, even before the push is applied. This is not unexpected for
a dynamic gait, especially given the narrow foot width and fast
CoM dynamics of the character. While the original step timings
are modified, the total cycle timing is generally preserved, and the
designer immediately sees this effect during authoring.

Shortly after the push begins, the time scaling rate saturates to the
maximum single and double support limits, attempting to increase
the step frequency. Simultaneously, the step adjustment begins to
increase, peaking at around 0.1 m. Near the end of the push, the
velocity adjustment begins to increase, peaking at approx. 0.4 m/s.
Intuitively, the time scaling mechanism responds quickly to small
errors, the step adjustment to larger errors that can be corrected
by foot placement, and the velocity adjustment to persistent errors
when the previous strategies fail.

Finally, note that as the velocity adjustment rises and falls, the gait
sampler activates the Forward Fast sample. In addition to ensuring

11

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Hopkins et al.

the behavior remains consistent with the authored style, the sample
blending aids the recovery in this scenario by increasing the step
frequency.

8.2 Adult-Sized Humanoid Simulation
To investigate our technique’s performance on a human-inspired
character, we designed several walking gaits for the simulated adult-
sized humanoid robot shown in Fig. 1, based on a design from
[Rodriguez et al. 2019]. This character features 6 DoF legs, a 2 DoF
spine, 4 DoF arms, and a 3 DoF neck. The robot’s height entails
significantly slower CoM dynamics than the dinosaur model. In the
accompanying video, we show the simulated robot walking in a
default style that demonstrates the nominal reference computed by
the gait planner, followed by a stylized walk that emulates a relaxed
human gait. The slower cycle duration (𝑇𝑆 = 1.5𝑠 In Place) and open
stance help establish the casual style, and the pelvis and spine yaw
animation emulate natural counter rotation of the hips and shoulders
during the swing phase. We also demonstrate the robot executing
three additional gaits that feature diverse upper-body motion and
heel/toe contact, including a sneak walk, a double-bounce walk, and
a neutral walk with heel-strike and toe-off.

8.3 Groot Hardware Platform
To investigate how authored styles transfer to physical robots, we
designed and evaluated several stylized gaits for the Groot-themed
hardware platform shown in Fig. 1. This child-sized humanoid ro-
bot features 5 DoF legs with line-contact feet, 6 DoF arms with a
shoulder shrug function, and a 3 DoF neck. The robot’s joints are
controlled using electric actuators that track position, velocity, and
feed-forward torque setpoints.
To compare the simulation and hardware results, we conducted

a forward walking experiment, deploying the same authored style
to three configurations of the character: the simulated robot, the
physical robot, and the physical robot in full costume. Fig. 14 in-
cludes the statistical tracking error of several gait functions for each
configuration. In our experience, the sim-to-real gap is fairly small.
In general, the mean tracking error is similar between the simulated
and physical robots; however, the standard deviation is smaller in
simulation, indicating a more repeatable performance. Despite the
higher variation in tracking error, the style transfers well to the
hardware platform and the controller reliably tracks the desired gait
across the desired range of input velocities. The walking gait is also
robust to the unmodeled costume and handles disturbances from
layered upper-body motions, such as waving while walking.

The accompanying video demonstrates additional walking styles,
including a slouched walk, a playful walk with extended arms, and a
double-bounce walk with significant arm swing. These styles high-
light some of the variations that are achievable with the proposed
gait parameterization, including diverse step timings, posture, and
upper body motion.
We also demonstrate an alternative dynamic gait on a lower-

body-only robot of the same design. The line-contact foot and lack
of ankle roll present certain animation challenges, including the
inability to track long swing intervals or animate the full 6-DoF
pose of the foot during swing (we choose here not to track foot roll).

Still, the proposed approach enables relatively easy authoring of
dynamic gaits on the constrained hardware.

Pe
lv

is
 R

z
[r

a
d
] 0.05

0.00

-0.05

Pe
lv

is
 T

z
[r

a
d
]

0.49

0.485

Le
ft

 E
lb

o
w

 [
ra

d
] -0.20

-0.25

-0.30

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Phase

Fig. 14. Animation tracking for the Groot character. Early Concept
Exploration, Only.We compare the pelvis yaw, pelvis height, and elbow bend
tracking for three configurations: the simulated robot, the physical robot,
and the physical character with full costume. The highlighted regions show
the standard deviation of the errors over several walk cycles as a function
of gait phase.

.

8.4 Gait Design
The amount of time required to animate a gait using the proposed
system varies depending on the complexity of the style and target
character. With only 10 actuated degrees of freedom, we were able to
design an expressive bouncy gate for the lower-body Groot robot in
a matter of minutes, editing the parameters directly on the hardware
platform. For the Groot robot, some styles were authored directly
on hardware while others were authored in simulation before being
deployed to hardware. The adult-sized humanoid gaits were adapted
from existing animation curves that were first authored using a
traditional animation tool. Finally, the dinosaur gaits, which required
characteristic tail and neck motions, were authored from scratch in
approximately 1-2 hours.

8.5 User Study
To evaluate the ease-of-use of the proposed editor, we conducted a
small user study with 4 participants unfamiliar with the tool. Two
participants had previous animation experience in Maya, while two
had no animation experience but had worked with humanoid robots.
After a brief introduction to the tool, each participant was asked to
design a gait sample for the adult-sized humanoid based on their
initial concept. The participants took between 25 and 45 minutes
to edit their respective gait, after which they were asked to answer
the following questions: (1) How does the resulting gait compare to

12

Interactive Design of Stylized Walking Gaits for Robotic Characters Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

your initial concept? (2) How did the interactive editing experience
influence your design? (3) How does the tool compare to a traditional
animation tool like Maya? (4)What is difficult and what is easy about
the process/tool?

Overall, responses were positive. For (1) users reported they were
generally satisfied with their ability to design a gait based on their
initial concept but made concessions as they discovered limitations
related to step timing and range of motion. For (2) users felt the
interactive nature of the editor helped them iterate quickly and
encouraged experimentation. One user unfamiliar with traditional
animation stated the process helped them visualize how each pa-
rameter affected the personality of the gait. For (3) one user with
Maya experience reported missing the ability to define keyframes
on the timeline. Another user reported that, while missing some
features, the proposed tool was easier to get started on and led to
faster results. For (4) all users had suggestions for UI features (e.g.
color coded splines; slow-motion playback) that could improve the
user experience. Several users reported that the animation curve
editor was easy to use.

9 CONCLUSION
Wehave devised a system to author stylizedwalking gaits for bipedal
robotic characters. As we demonstrated with three examples, our
modeling applies to bipeds of varying size, proportion, actuated
degrees of freedom, and mass distribution. Animators who have
little or no prior robotics experience can design stylized walking
gaits quickly and intuitively, with a user interface that exposes
a rich set of animation parameters while hiding the complexity
of the physical system. This is made possible by an interactive
editing workflow that can be employed directly on hardware and is
enabled by the proposed gait parameterization, phase-space sample
blending, and gait adjustment strategies that preserve the authored
style. The latter ensures that characters that perform a stylized gait
respond naturally to disturbances as we demonstrate with our Dino
character.

Limitations and Future Work. Our authoring approach has several
limitations. While our tool can be used to author content directly on
hardware, with several safeguards in place to prevent the robot from
falling, we cannot guarantee that the animator’s edits won’t exceed
the capabilities of the controller. Online authoring tools that can
provide safety guarantees are an existing avenue for future work.

While our interactive editor provides a self-contained user inter-
face for designing walking gaits, we also acknowledge that manual
curve editing is not always the appropriate method of gait design
across all use cases. In the future, we plan to investigate automated
porting of walk cycles from keyframed animation content and mo-
tion capture data.
We have restricted our current authoring to walk cycles. An

interesting future direction is an extension to more challenging
gaits such as running and skipping and/or cyclic acrobatic motions
that are well-suited for modeling in a procedural authoring tool.
Finally, model-based control stacks are difficult to build and re-

quire tuning. It is challenging to identify sim-to-real gaps, and even
more challenging to address them. Learning-based control, or more

specifically, imitation learning, is a promising alternative, with ro-
bustness to disturbances and tolerance to modeling imperfections
acquired during training. We plan to explore the use of the proposed
technique to build dense, artifact-free gait libraries for training RL
policies. We are also interested in incorporating learning-based ref-
erence tracking controllers to supplement the proposed gait planner
and editor, maintaining an interactive animation workflow.

ACKNOWLEDGMENTS
We would like to thank the Groot project team and participants of
the user study.

REFERENCES
Evan Ackerman. 2021. How Boston Dynamics Taught Its Robots to Dance. IEEE

Spectrum (Jan. 7 2021). https://spectrum.ieee.org/how-boston-dynamics-taught-
its-robots-to-dance

Aaron D Ames. 2014. Human-inspired control of bipedal walking robots. IEEE Trans.
Automat. Control 59, 5 (2014), 1115–1130.

Taylor Apgar, Patrick Clary, Kevin Green, Alan Fern, and Jonathan Hurst. 2018. Fast
Online Trajectory Optimization for the Bipedal Robot Cassie. In Robotics: Science
and Systems XIV. Robotics: Science and Systems Foundation.

Peter J. Bishop, Antoine Falisse, Friedl De Groote, and John R. Hutchinson. 2021. Predic-
tive simulations of running gait reveal a critical dynamic role for the tail in bipedal
dinosaur locomotion. Science Advances 7, 39 (2021), eabi7348. https://doi.org/10.
1126/sciadv.abi7348 arXiv:https://www.science.org/doi/pdf/10.1126/sciadv.abi7348

Steven Bohez, Saran Tunyasuvunakool, Philemon Brakel, Fereshteh Sadeghi, Leonard
Hasenclever, Yuval Tassa, Emilio Parisotto, Jan Humplik, Tuomas Haarnoja, Roland
Hafner, et al. 2022. Imitate and Repurpose: Learning Reusable Robot Movement
Skills From Human and Animal Behaviors. arXiv preprint arXiv:2203.17138 (2022).

Stelian Coros, Philippe Beaudoin, and Michiel van de Panne. 2010. Generalized Biped
Walking Control. In ACM SIGGRAPH 2010 Papers (Los Angeles, California) (SIG-
GRAPH ’10). Association for Computing Machinery, New York, NY, USA, Article
130, 9 pages. https://doi.org/10.1145/1833349.1781156

Behzad Dariush, Michael Gienger, Arjun Arumbakkam, Christian Goerick, Youding
Zhu, and Kikuo Fujimura. 2008. Online and markerless motion retargeting with
kinematic constraints. In 2008 IEEE/RSJ International Conference on Intelligent Robots
and Systems.

Robert J Griffin, Georg Wiedebach, Sylvain Bertrand, Alexander Leonessa, and Jerry
Pratt. 2017. Walking stabilization using step timing and location adjustment on
the humanoid robot, atlas. In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 667–673.

Keith Grochow, Steven L Martin, Aaron Hertzmann, and Zoran Popović. 2004. Style-
based inverse kinematics. In ACM SIGGRAPH 2004 Papers. 522–531.

A. Hertzmann and V. Zordan. 2011. Physics-Based Characters. IEEE Computer Graphics
and Applications 31, 04 (jul 2011), 20–21. https://doi.org/10.1109/MCG.2011.61

Jessica K. Hodgins, Wayne L. Wooten, David C. Brogan, and James F. O’Brien. 1995. An-
imating Human Athletics. In Proceedings of the 22nd Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’95). Association for Computing
Machinery, New York, NY, USA, 71–78. https://doi.org/10.1145/218380.218414

Daniel Holden, Taku Komura, and Jun Saito. 2017. Phase-functioned neural networks
for character control. ACM Trans. Graph. 36, 4, Article 42 (jul 2017), 13 pages.
https://doi.org/10.1145/3072959.3073663

Ahmad Abdul Karim, Thibaut Gaudin, Alexandre Meyer, Axel Buendia, and Saida
Bouakaz. 2013. Procedural locomotion of multilegged characters in dynamic envi-
ronments. Computer Animation and Virtual Worlds 24, 1 (2013), 3–15.

Twan Koolen, Sylvain Bertrand, Gray Thomas, Tomas De Boer, Tingfan Wu, Jesper
Smith, Johannes Englsberger, and Jerry Pratt. 2016. Design of a momentum-based
control framework and application to the humanoid robot atlas. International Journal
of Humanoid Robotics 13, 01 (2016), 1650007.

Lucas Kovar and Michael Gleicher. 2003. Flexible automatic motion blending with
registration curves. ACM Symposium on Computer Animation, 214–224.

Przemyslaw Kryczka, Petar Kormushev, Nikos G. Tsagarakis, and Darwin G. Caldwell.
2015. Online regeneration of bipedal walking gait pattern optimizing footstep
placement and timing. In 2015 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 3352–3357. https://doi.org/10.1109/IROS.2015.7353844

Seyoung Lee, Sunmin Lee, Yongwoo Lee, and Jehee Lee. 2021. Learning a family of
motor skills from a single motion clip. ACM Transactions on Graphics 40, 4 (2021).

Yoonsang Lee, Sungeun Kim, and Jehee Lee. 2010. Data-Driven Biped Control. In ACM
SIGGRAPH 2010 Papers (Los Angeles, California) (SIGGRAPH ’10). Association for
Computing Machinery, New York, NY, USA, Article 129, 8 pages. https://doi.org/
10.1145/1833349.1781155

13

https://spectrum.ieee.org/how-boston-dynamics-taught-its-robots-to-dance
https://spectrum.ieee.org/how-boston-dynamics-taught-its-robots-to-dance
https://doi.org/10.1126/sciadv.abi7348
https://doi.org/10.1126/sciadv.abi7348
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/sciadv.abi7348
https://doi.org/10.1145/1833349.1781156
https://doi.org/10.1109/MCG.2011.61
https://doi.org/10.1145/218380.218414
https://doi.org/10.1145/3072959.3073663
https://doi.org/10.1109/IROS.2015.7353844
https://doi.org/10.1145/1833349.1781155
https://doi.org/10.1145/1833349.1781155

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Hopkins et al.

Gabriel B Margolis and Pulkit Agrawal. 2022. Walk These Ways: Tuning Robot Control
for Generalization with Multiplicity of Behavior. Conference on Robot Learning
(2022).

Franck Multon, Laure France, Marie-Paule Cani-Gascuel, and Giles Debunne. 1999.
Computer animation of human walking: a survey. The Journal of Visualization and
Computer Animation 10, 1 (1999), 39–54.

Shin’ichiro Nakaoka, Shuuji Kajita, and Kazuhito Yokoi. 2010. Intuitive and flexible
user interface for creating whole body motions of biped humanoid robots. In 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems. 1675–1682.
https://doi.org/10.1109/IROS.2010.5649038

Shin’ichiro Nakaoka, Atsushi Nakazawa, Fumio Kanehiro, Kenji Kaneko, Mitsuharu
Morisawa, Hirohisa Hirukawa, and Katsushi Ikeuchi. 2007. Learning from Observa-
tion Paradigm: Leg Task Models for Enabling a Biped Humanoid Robot to Imitate
Human Dances. The International Journal of Robotics Research 26, 8 (2007).

Michael Neunert, Cédric de Crousaz, Fadri Furrer, Mina Kamel, Farbod Farshidian,
Roland Siegwart, and Jonas Buchli. 2016. Fast nonlinear Model Predictive Control
for unified trajectory optimization and tracking. In 2016 IEEE International Conference
on Robotics and Automation (ICRA).

Koichi Nishiwaki, Satoshi Kagami, Yasuo Kuniyoshi, Masayuki Inaba, and Hirochika
Inoue. 2002. Online generation of humanoid walking motion based on a fast gener-
ation method of motion pattern that follows desired zmp. In IEEE/RSJ international
conference on intelligent robots and systems, Vol. 3. IEEE, 2684–2689.

David E. Orin and Ambarish Goswami. 2008. Centroidal Momentum Matrix of a hu-
manoid robot: Structure and properties. In 2008 IEEE/RSJ International Conference on
Intelligent Robots and Systems. 653–659. https://doi.org/10.1109/IROS.2008.4650772

Matthew Panzarino. 2021. Disney Imagineering’s Project Kiwi is a free-walking robot
that will make you believe in Groot. https://tcrn.ch/3sHRaZ3 Accessed on May 16,
2023.

Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel van de Panne. 2017. DeepLoco:
Dynamic Locomotion Skills Using Hierarchical Deep Reinforcement Learning. ACM
Transactions on Graphics (Proc. SIGGRAPH 2017) 36, 4 (2017).

Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey
Levine. 2020. Learning agile robotic locomotion skills by imitating animals. Robotics:
Science and Systems (2020).

Xue Bin Peng, Yunrong Guo, Lina Halper, Sergey Levine, and Sanja Fidler. 2022. ASE:
large-scale reusable adversarial skill embeddings for physically simulated characters.
ACM Trans. on Graph. (TOG) 41, 4 (2022).

Nancy S. Pollard and Paul S. A. Reitsma. 2001. Animation of Humanlike Characters:
Dynamic Motion Filtering with a Physically Plausible Contact Model.

Jerry Pratt, John Carff, Sergey Drakunov, and Ambarish Goswami. 2006. Capture
Point: A Step toward Humanoid Push Recovery. In 2006 6th IEEE-RAS International
Conference on Humanoid Robots. 200–207. https://doi.org/10.1109/ICHR.2006.321385

Alba M Rios Rodriguez, Steven Poulakos, Maurizio Nitti, Mattia Ryffel, and Robert
Sumner. 2019. Parameterized animated activities. In Proceedings of the 12th ACM
SIGGRAPH Conference on Motion, Interaction and Games. 1–9.

Jonah Siekmann, Yesh Godse, Alan Fern, and Jonathan Hurst. 2021. Sim-to-Real Learn-
ing of All Common Bipedal Gaits via Periodic Reward Composition. In 2021 IEEE
International Conference on Robotics and Automation (ICRA) (Xi’an, China). IEEE
Press, 7309–7315. https://doi.org/10.1109/ICRA48506.2021.9561814

Kwang Won Sok, Manmyung Kim, and Jehee Lee. 2007. Simulating biped behaviors
from human motion data. ACM Trans. Graph. 26, 3 (2007).

Joan Solà. 2015. Quaternion kinematics for the error-state Kalman filter. ArXiv
abs/1711.02508 (2015).

Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. Mujoco: A physics engine for
model-based control. In 2012 IEEE/RSJ international conference on intelligent robots
and systems. IEEE, 5026–5033.

Pierre-Brice Wieber. 2006. Trajectory free linear model predictive control for stable
walking in the presence of strong perturbations. In 2006 6th IEEE-RAS International
Conference on Humanoid Robots. IEEE, 137–142.

Jungdam Won, Deepak Gopinath, and Jessica Hodgins. 2022. Physics-based character
controllers using conditional VAEs. ACM Transactions on Graphics 41, 4 (2022).

Weitao Xi and C. David Remy. 2014. Optimal gaits and motions for legged robots. In
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

Heyuan Yao, Zhenhua Song, Baoquan Chen, and Libin Liu. 2022a. ControlVAE: Model-
Based Learning of Generative Controllers for Physics-Based Characters. ACM
Transactions on Graphics 41, 6 (2022).

Qingfeng Yao, Jilong Wang, Shuyu Yang, Cong Wang, Hongyin Zhang, Qifeng Zhang,
and Donglin Wang. 2022b. Imitation and Adaptation Based on Consistency: A
Quadruped Robot Imitates Animals from Videos Using Deep Reinforcement Learn-
ing. arXiv preprint arXiv:2203.05973 (2022).

KangKang Yin, Kevin Loken, and Michiel van de Panne. 2007. SIMBICON: simple
biped locomotion control. ACM Trans. Graph. 26, 3 (jul 2007), 105–es. https:
//doi.org/10.1145/1276377.1276509

Peng Zhao and Michiel van de Panne. 2005. User interfaces for interactive control of
physics-based 3d characters. In Proceedings of the 2005 symposium on Interactive 3D
graphics and games. 87–94.

Ziyi Zhou, BruceWingo, Nathan Boyd, SethHutchinson, and Ye Zhao. 2022. Momentum-
Aware Trajectory Optimization and Control for Agile Quadrupedal Locomotion.
arXiv preprint arXiv:2203.01548 (2022).

APPENDIX

Model Predictive Controller (MPC) Formulation

The horizontal components of the CoMposition xcom =
[
𝑥com 𝑦com

]⊤
evolve according to

¥𝑥com =
1

𝑧com

(
(¥𝑧com + 𝑔) (𝑥com − 𝑥cop) −

𝜏𝑦

𝑚

)
¥𝑦com =

1
𝑧com

(
(¥𝑧com + 𝑔) (𝑦com − 𝑦cop) +

𝜏𝑥

𝑚

) (11)

where xcop =
[
𝑥cop 𝑦cop

]⊤ is the location of the CoP on the
ground plane, 𝑧com is the CoM height,𝑔 is the gravitational constant,
and 𝜏𝑥 and 𝜏𝑦 are the torques on the CoM caused by changes in
angular momentum of the robot with mass𝑚.

Given predictions of the CoM height and the angular momentum
of the robot, these equations can be integrated over a preview win-
dow of length 𝑇 . We make no assumptions about the evolution of
𝑧com or 𝜏𝑥 and 𝜏𝑦 and instead numerically integrate the horizontal
CoM trajectory over the preview window using an integration step
of 0.02s. This formulation allows for arbitrarily varying height tra-
jectories and flight phases in possible future extensions to the gait
design. However, for the results presented in this work, we make
the simplifying assumption that the CoM height and the angular
momentum are constant. Note that this still allows the animation to
track a varying pelvis height. The assumptions are for the purpose
of planning the horizontal components of the CoM only.
The preview footholds are converted to a series of 𝐾 convex

support polygons and their respective time intervals in the pre-
view window. To ensure a dynamically feasible plan, the CoP must
always lie inside the active support area. This is achieved by op-
timizing for two CoP waypoints per support interval: one at its
midpoint, constrained to the active support polygon, and one at its
end, constrained to the intersection of the active support and the
next. Interpolating the resulting 𝑁 = 2𝐾 waypoints linearly, the
resulting CoP is guaranteed to remain within the convex support
regions. We jointly optimize CoP waypoints

z =
[
𝑥cop,0 𝑦cop,0 𝑥cop,1 𝑦cop,1 ... 𝑥cop,𝑁 𝑦cop,𝑁

]⊤ (12)

and the final horizontal CoM position and velocity at the end of the
preview window

𝝃𝑇 =

[
x⊤com,𝑇

¤x⊤com,𝑇

]⊤
(13)

in a quadratic program:

min
z,𝝃𝑇

(
A𝑇 𝝃𝑇 − c𝑇

)⊤ W𝑇

(
A𝑇 𝝃𝑇 − c𝑇

)
+ (z − c)⊤Wc (z − c) + (Fz)⊤W𝑣 (Fz)

s.t. xcop,0 = x𝑖cop
xcom,𝑇 + A𝑝z + b𝑝 = x𝑖com
¤xcom,𝑇 + A𝑣z + b𝑣 = ¤x𝑖com
xcop,𝑛 ∈ 𝑪𝑛 ∀𝑛 ∈ [0, 𝑁 − 1]

(14)

14

https://doi.org/10.1109/IROS.2010.5649038
https://doi.org/10.1109/IROS.2008.4650772
https://tcrn.ch/3sHRaZ3
https://doi.org/10.1109/ICHR.2006.321385
https://doi.org/10.1109/ICRA48506.2021.9561814
https://doi.org/10.1145/1276377.1276509
https://doi.org/10.1145/1276377.1276509

Interactive Design of Stylized Walking Gaits for Robotic Characters Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

A𝑇 is chosen such that A𝑇 𝝃𝑇 is the final Capture Point (CP), a linear
combination of CoM position and velocity [Pratt et al. 2006], at the
end of the preview window. The first objective brings the final CP
close to the centroid of the last support polygon c𝑇 . The second
term of the objective encourages each CoP waypoint to lie close to
the centroid of its respective constraint polygon (c is the vector of
the centroid locations). The third term penalizes large CoP velocities
with F being a finite difference matrix. W𝑇 , Wc, and W𝑣 are the
respective objective weight matrices.
For continuity of the control output, the equality constraints

consist of the initial CoP location x𝑖cop as well as initial horizontal
CoM position x𝑖com and velocity ¤x𝑖com. The matrices A𝑝 , A𝑣 , b𝑝 ,
b𝑣 are the discrete reverse-time integration matrices for the CoM
according to Eq. 11, allowing us to constrain the initial CoM while
optimizing for the final CoM xcom,𝑇 . The final constraint enforces
that each CoP waypoint lies within its respective convex constraint
polygon 𝑪 .

Task-Space Inverse Dynamics (ID) Solver
Dynamic Constraints. We assume the robot is modeled as an

articulated rigid body system with dynamics,[
0
𝝉

]
= H(q) ¥q + C(q, ¤q) −

∑︁
𝑐

J⊤𝑐 f𝑐 . (15)

Here 𝝉 ∈ R𝑁 represents the vector of joint torques, H(q) the joint-
space inertia matrix, C(q, ¤q) the vector of centrifugal, Coriolis and
gravity torques, f𝑐 the external contact forces, and J𝑐 the correspond-
ing contact Jacobians.

The centroidal dynamics are described by the Newton-Euler con-
straints, which equate the rate of change of whole body momentum,
¤h, to the sum of external wrenches acting on the system, i.e.

¤h =
∑︁
𝑐

[
I

r×𝑐

]
f𝑐 +

[
−𝑚g

0

]
. (16)

Here ¤h = [¤l⊤ ¤k⊤]⊤ ∈ R6 is the vector of linear and angular momen-
tum rates, r×𝑐

is a cross product matrix computed from the vector
pointing from CoM to each contact point, and −𝑚g is the force of
gravity

Contact Model. As in [Pollard and Reitsma 2001], we rely on a
polygonal friction cone approximation to optimize the forces at
each contact point subject to Coulomb friction constraints. Fig. 15
illustrates the adopted contact model, which assumes contact points
are defined at the convex hull of the active support polygon. Each
friction cone is approximated by four basis vectors, 𝜷𝑐,𝑖 ∈ R3, that
span a convex subset of the cone. Valid contact forces are encoded
as a vector of negative weights, 𝝆𝑐 ∈ R4, using the mapping,

f𝑐 =
[
𝜷𝑐,1 𝜷𝑐,2 𝜷𝑐,3 𝜷𝑐,4

]
𝝆𝑐 . (17)

Task-Space Objectives. We assume that a whole-body controller
computes a set of task-space acceleration and momentum rate of
change objectives to track a desired reference motion. Given the
current robot state, s = [q⊤ ¤q⊤]⊤, joint and spatial acceleration
objectives, u𝑡 , can be expressed as a linear function of the joint

Fig. 15. Contact model. Contact forces acting at points on the convex hull
of the foot are expressed as a non-negative, weighted sum of basis vectors,
𝜷𝑐,𝑖 , that lie within the friction cone.

.

acceleration vector, i.e.

u𝑡 = ¤J𝑡 ¤q + J𝑡 ¥q, (18)

where J𝑡 is a configuration-dependant task Jacobian. Likewise, the
centroidal momentum rate can be expressed as,

¤h = ¤Aℎ ¤q + Aℎ ¥q, (19)

where Aℎ represents the configuration-dependent centroidal mo-
mentum matrix (CMM) [Orin and Goswami 2008].

Task-Space Inverse Dynamics Optimization. Now let u represent
the stacked vector of desired task-space accelerations and momen-
tum rate objectives and let J represent the corresponding matrix of
Jacobians. The proposed inverse dynamics solver resolves the set
of task-space objectives by optimizing the vector of joint acceler-
ations and contact forces using the following quadratic program
formulation:

min
¥q,𝝆

(
u − ¤J¤q − J¥q

)⊤ W𝑡

(
u − ¤J¤q − J¥q

)
(20)

+ 𝜆¥q ¥q⊤ ¥q + 𝜆𝝆𝝆⊤𝝆 + 𝜆𝝉𝝉⊤𝝉

s.t. ¤Aℎ ¤q + Aℎ ¥q =
∑︁
𝑐

[
I

r×𝑐

]
f𝑐 +

[
−𝑚g

0

]
(21)

𝑘𝑙 (qmin − q) − 𝑏𝑙 ¤q ≤ ¥q (22)
𝑘𝑙 (qmax − q) − 𝑏𝑙 ¤q ≥ ¥q (23)
0 ≤ 𝝆 (24)
∀𝑐 f𝑐 ≤ f𝑐,max, (25)

where
• 𝝆 represents the vector of 𝝆𝑐 weights for each contact point.
• W𝑡 is the objective weighting matrix.
• 𝜆𝝆 , 𝜆¥q, and 𝜆𝝉 are regularization weights.
• 𝝉 ≔ −∑

𝑐 J𝑇𝑐 f𝑐 represents the component of torque that is
induced by the contact forces in Eq. 15. Regularizing𝝉 reduces
unnecessary internal forces that otherwise arise as a result
of the contact force regularization.

• (21) enforces the centroidal dynamics constraint.
• (22) and (23) enforce soft position limits with second-order
dynamics defined by stiffness and damping gains, 𝑘𝑙 and 𝑏𝑙 .

• (24) enforces the non-negativy constraints of the adopted
contact force model.

• (25) limits the max contact force to 0 for inactive contacts.
From the optimized ¥q and 𝝆 values, we derive the final contact

force and joint torque solution using Eqs. 17 and 15.

15

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Gait Planner
	4.1 Conventions
	4.2 Motion Planning
	4.3 Animation Parameters

	5 Gait Sampler
	5.1 Phase Map
	5.2 Blending Two Samples
	5.3 Velocity-Based Sample Interpolation

	6 Interactive Gait Editor
	6.1 Edit Mode
	6.2 Test Mode

	7 Model-Based Controller and Estimator
	7.1 Model-Based Controller
	7.2 Estimator

	8 Results
	8.1 Small-Scale Dinosaur Simulation
	8.2 Adult-Sized Humanoid Simulation
	8.3 Groot Hardware Platform
	8.4 Gait Design
	8.5 User Study

	9 Conclusion
	Acknowledgments
	References

