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Figure 1: Examples of robot-sculpted clay models.

ABSTRACT
We present an interactive design system that allows users to create
sculpting styles and fabricate clay models using a standard 6-axis
robot arm. Given a general mesh as input, the user iteratively selects
sub-areas of the mesh through decomposition and embeds the
design expression into an initial set of toolpaths by modifying key
parameters that affect the visual appearance of the sculpted surface
finish. These parameters were identified and extracted through a
series of design experiments, using a customized loop tool to cut
the water-based clay material. The initialized toolpaths are fed into
the optimization component of our system afterwards for optimal
path planning, aiming to find the robotic sculpting motions that
match the target surface, maintaining the design expression, and
resolving collisions and reachability issues. We demonstrate the
versatility of our approach by designing and fabricating different
sculpting styles over a wide range of clay models.
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1 INTRODUCTION
Sculpture is one of the oldest forms of three-dimensional visual art.
Amongst all the materials used for sculpture, clay is the most wide-
spread and frequently used. Its malleability allows it to be formed
into any shape imaginable and makes it suitable for both additive
and subtractive processes. During a sculpting process, artists utilize
a variety of techniques and employ different tools to reform a piece
of clay until it satisfies the intent of their artistic expression.

In today’s industrialized context, CNC milling is widely used
for the manufacturing of three-dimensional sculptural artefacts
and often substitutes traditional processes including stone carving
or foam cutting. However, conventional CNC milling techniques
are limited when applied to soft materials like water-based clay.
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Highly ductile materials are notoriously difficult to cut mechani-
cally, and the strong adhesive tendency of clay greatly hinders the
removal of small shavings. A special technique called “cryogenic
machining” uses low-temperature coolant to freeze soft or elastic
materials (for instance, rubber) temporarily during the milling pro-
cess [Dhokia et al. 2011], but has to our knowledge not been used
for clay material.

On the other hand, human sculpting still holds a special place due
to its close association with arts and crafts. Due to the non-linear
nature of the design process, artists usually rely on an interactive
process to think and create through minds and hands simultane-
ously. Compared to machining, manual clay sculpting satisfies this
need, with its modifiable and superimposable layers of sculpting
strokes. Additionally, the often imperfect surface finish records the
working process of the artist and thus becomes a feature of artistic
expression. Such patterns and textures are difficult to achieve and
often not considered in CNC machining, and if required, they are
typically only achieved by subsequent special surface treatments.

With the long term goal of endowing robots with human-level
skill, we present RobotSculptor—a user-guided design and motion
planning framework for robotic clay sculpting. By isolating those
parameters related to the aesthetics of the sculpture from the fabri-
cation process, we enable the user to define the style of the result.
Our system automates the sculpting process by generating feasible
motion trajectories that can be executed by robot arms.

In order to make the computational problem tractable, we focus
on a sculpting process that only involves subtraction of material,
using custom-shaped wire loop tools (Figure 3). The use of such
customized tools poses two challenges: since the tools are direc-
tional, no off-the-shelf algorithm is available, as conventional path
planning algorithms for CNC machining often treat the milling
bit as axisymmetric. New planning algorithms are needed to suit
our tool, i.e. manage all 6 Degrees of Freedom (DoFs). The other
challenge is how to support a wide range of possible sculpting
strokes that unleash the expression of the user’s creativity while
simultaneously complying with the above algorithms.

We open our investigation with a set of experiments aimed at
identifying the primary parameters that affect the expression of
the user’s design intent. Building on the insights gained through
these experiments, we then address the challenges listed above by
separating the entire pipeline into two independent units:

• User-Guided Initialization exposes a set of parameters
for the user to control interactively, and transfers the input
style information into a series of initial tool positions, i.e. a
toolpath, that matches their design intent. This part aims to
provide the user the freedom to design the sculpting strokes;

• Path Planning takes the initial toolpath as input to an op-
timization and computes the complete robot trajectories.
This part aims to find a high fidelity approximation of the
input that balances accuracy and design expression. It fur-
ther resolves any collisions and respects all other workspace
constraints of the fabrication robot.

We demonstrate the versatility of our computational approach
on a set of examples of increasing complexity, and finally fabricate
these objects with a Universal Robot UR5 (5 kg-payload version), to

assess the degree to which simulated results translate to the real
world.

1.1 Overview
As illustrated in Figure 2, our pipeline proceeds as follows:

(1) Given a mesh representation of the target model as input, the
user sketches free strokes on the model to define preferred
independent areas for further processing.

(2) For each disconnected stroke group, the system computes a
decomposed patch.

(3) With a minimal set of user input on directional guidance, our
system generates the initial sculpting paths for each patch.

(4) After the toolpaths have been initialized, the optimization
adjusts the toolpaths to eliminate collisions and smoothen
sharp corners, while still maintaining the artistic expression.

(5) Finally, once the toolpath has been successfully optimized,
the user can preview the simulated result, or directly execute
the trajectory information computed from the optimization
to obtain a physical artefact of the “stylized” target geometry
in clay.

We organize this paper as follows: Section 2 covers work related
to our research. Section 3 shows a series of design experiments we
conducted to understand how the material deforms with specific
fabrication parameters. Section 4 explains how we build our design
system based on the important parameters extracted from those
design experiments. Section 5 presents the optimization formulation
that helps to transform design intent into collision-free, feature-
preserving robot trajectories. We demonstrate the capacity of our
system on a set of physically fabricated examples in Section 6, and
discuss the limitations and future work in Section 7. See also the
accompanying video, which showcases the pipeline along with the
results.

2 RELATEDWORK
Clay Fabrication. As a representative material for geometry form-

ing, clay sculpting has been widely used in arts and crafts fields as
a hand modelling process [Faraut and Faraut 2013; Philippe Faraut
and Charisse Faraut 2009]. Recently, its economical and malleable
characteristics have also led to increasing popularity in 3D printing
and multi-axis robotic applications. These applications typically
employ a customized tool attached to a common 3-axis CNC ma-
chine [Nan et al. 2016] or a 6-axis industrial robot arm [Bechthold
2016] and manufacture artefacts through additive, subtractive, or
formative processes. Additive processes usually deposits clay either
in layers to create sealed surface geometries, or in a woven style
[Friedman et al. 2014; Rosenwasser et al. 2017] to create patterns.
Deposition processes start either from a non-planar base geometry
[Dunn et al. 2016; Ko et al. 2019] or a planar base that is gradu-
ally transformed to a non-horizontal fabrication plane [Bhooshan
et al. 2019; Trilsbeck et al. 2019]. Taking advantage of the mate-
rial’s malleability, digitally controlled throwing of the clay has
also been studied in order to erect large-scale building structures
over distance [Dörfler et al. 2014]. Subtractive and formative pro-
cesses, however, generally start with an initial block of clay which is
shaped by either applying pressure to deform the material [Tan and
Dritsas 2016], or cutting off material [Schwartz and Prasad 2013].
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Figure 2: System overview. It takes four steps to design & sculpt a given model with specific styles: 1) the system takes a
general triangle mesh as input and decomposes it based on the drawn strokes. 2) The user specifics sculpting styles based on
the patch-level parameters and generate a set of initial toolpaths using our system. 3) Using the initialized toolpaths as input,
the optimization will compute robot trajectories while maintain style information and resolve collisions simultaneously. 4)
The trajectories are executed on a UR5 to sculpt a physical clay model that match the optimized results.

Weichel et al. [2015] combined additive and subtractive processes
(i.e., milling) using two distinct tools.

Design Input. While engineering problems are often well-defined
and have clear objectives to optimize towards, design questions
are usually open-ended and require different approaches to resolve.
For instance, in order to increase the design variety and expres-
siveness, designers usually prefer a forward design process where
they can apply modifications interactively, based on simulated or
even fabricated results—and typically do not settle for rigid objec-
tives before a final result is deemed adequate [Clifford et al. 2014;
Schwartz and Prasad 2013]. Interactive approaches are employed to
enlarge the variety of the resulting appearance through specifically
designed rapid-prototyping systems. These systems provide instant
feedback or guidance during the fabrication process [Braumann
and Brell-Çokcan 2015; Johns 2017; Peng et al. 2018; Zoran and
Paradiso 2013] and embrace the imprecise mapping between the
digital models and the physical results.

Unlike the interactive fabrication approaches mentioned above,
our approach still automatically fabricates the target, but intends to
facilitate the artistic design process through an interactive toolpath
initialization, and compute feasible toolpaths that balance the user’s
design inputs and model accuracy through an optimization process.

Wemust identify the factors that affect the translation ofmanually-
created designs into machine commands. In our context, the distri-
bution of toolpaths vitally influences the appearance of the final
surface. Kontovourkis and Tryfonos [2018] and Rael and Fratello
[2017] demonstrated potential applications in this direction, but
it still remains open to what extent a robot can achieve subtrac-
tive clay sculpting. This leads us to develop style-oriented toolpath
generation techniques that have rarely been touched.

Path Planning. While toolpath planning plays an essential part
in our work, we frame it in a broader context of path generation
problems where a large body of work is available in CNCmachining
[Chiou and Lee 2002; Feng and Li 2002; Jun et al. 2003; Sullivan
et al. 2012; Tournier and Duc 2005; Zhu and Lee 2004]. One main
difference of our work lies in the customized tool, which requires
specially designed path planning algorithms to manage all of its
6 DoFs, compared to a usual 5-DoF milling bit. Dragomatz and
Mann [1997] surveyed general path generation methods used in
CNC milling, and Elber and Cohen [1994] summarized two main

approaches, isocurves and contours, and their strengths and weak-
nesses. Our method is similar to the isocurve approach, but allows
for more flexibility in toolpath generation as we care more about
the design expression than machining time or toolpath length. To
increase the variety of surface styles, we further employ a “divide-
and-conquer” concept for toolpath generation by splitting the target
geometry into several sub-sections. Similar approaches have also
been applied to multi-axis milling path generation [Muntoni et al.
2018; Zhao et al. 2018].

The general problem of robotic path planning has been studied
extensively in the past, and respective software is readily available.
For example, the Open Motion Planning Library [Şucan et al. 2012]
provides a collection of sampling-based algorithms to plan a fea-
sible path between two points, subject to optimality conditions.
The Descartes package of the ROS-Industrial project [Edwards and
Lewis 2012] implements a tree search to find a robot trajectory that
matches a suite of prescribed tool positions. Unlike these applica-
tions, however, toolpath planning for our application calls for long
trajectories with very dense sampling, in order to accurately follow
the fine-scaled details of the target shape. Further, the entire length
of the cut path is heavily restricted by collision constraints and
computationally expensive optimization criteria. Such conditions
are inherently challenging for sampling based approaches. Notably,
De Maeyer et al. [2017] report that already for 50 trajectory points,
memory usage starts to become a matter of concern for the tree
search used by Descartes. In our application we routinely exceed
this number ten-fold. We therefore choose to rely on iterative opti-
mization, namely Newton’s method, to handle the large number of
parameters—albeit at the expense of global optimality.

Robotic manipulation of a wire-like tool has recently been stud-
ied in Duenser et al. [2020], where an elastically deformable, heated
rod cuts through blocks of polystyrene foam. That work focused on
trajectory optimization for a small number of individual cuts using
a comparably large tool, rather than on a global cutting strategy. In
contrast, the tools we employ are much smaller in size, such that a
global strategy for path generation is necessary. Nevertheless, we
draw inspiration from their work for our path planning step, and
optimize for feasible robot trajectories in a similar fashion.
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3 DESIGN FACTOR EXTRACTION
Instead of developing a fully automated system similar to existing
software for Computer-Aided Manufacturing (CAM), we intend to
provide the user with control over those aspects of the fabrication
process that are relevant for the design and appearance of an object.
Thus, we need to first understand what factors affect the fabrication
result of a sculpting process so as to abstract them into parameters
that can be built into our system.

In order to reveal the most important design parameters, we
conducted a series of experiments involving the interaction between
the tool and the clay material. These experiments were designed to
help us in three aspects:

• Understand the relationship between the material deforma-
tion and sculpting velocity;

• Guide the selection of a suitable shape and size of the cus-
tomized tools;

• Decide on a minimal set of parameters exposed to the user
to exert control on the toolpath generation.

Before discussing the details of these experiments, we briefly
introduce our tool designs.

3.1 Customized Loop Tool
A conventional loop tool (Figure 3) for cutting clay consists of a
handle and a planar “loop”, a piece of steel wire or a thin, narrow
metal strip bent into rectangular, triangular, or circular profiles to
fulfill different cutting needs (size, angle, texture effects, level of
detail, etc.). While the sculptor uses their hands for the modelling
(additive) and formative process, such loop tools are usually used
for the subtractive process—cutting a strip of clay off by moving
the tool along a desired path.

Figure 3: Left: different manual loop tools used by profes-
sional sculptors; Right: our customized loop tool that can be
attached to a UR5 as the robot end effector.

We use similar customized tools with replaceable “loops” (Fig-
ure 6) and a handle that can be attached to the robot. Compared
to a conventional milling bit, one important benefit is the non-
axisymmetry of the tool, which allows it to cut off clay strips of
different widths and sizes by simply rotating around its axis. While
this additional flexibility is trivial for human users to control, it adds
significant complexity to the planning algorithm—the additional
degree of freedom needs to be managed and exploited.

3.2 Parameter Extraction Experiments
We categorize the experiments into two classes: patch-level param-
eters and path-level parameters. The patch-level parameters affect

the selected areas (“patches”) of the mesh on which the preferred
sculpting styles are applied; the path-level parameters affect the
toolpaths generated on each patch. The selected patch can be either
a portion of the whole mesh or the mesh itself.

Patch geometry (patch-level). This parameter is directly related
to how an input model is decomposed. It defines the area and
shape to which a particular style can be applied, and can be created
with various methods. We implemented a sketch-based method
for the interactive design process in our system (Section 4). Note
that simple cases, manual decomposition with any mesh operation
software may suffice.

Patch overlap (patch-level). We observed undesired material ag-
gregation near the seams between individual patches, leading to
a clear visual separation. This is caused by the high ductility of
the material—when the tool enters or exits the clay, at the material
interface, it carries forward some material by pushing or pulling,
rather than causing a clean separation. This effect is most visible
when entry and exit locations accumulate in the same spot. We
found that we could reduce this effect sufficiently by introducing
an overlap between adjacent patches, as illustrated in Figure 4, and
thus eliminating the accumulation.

Figure 4: Seam comparison models. Left: sculpt paths in-
tersecting at seam area without overlapping; Middle: sculpt
paths intersecting at seams with overlapping; Right: contin-
uous sculpt paths across the whole surface.

Toolpath length (path-level). The above-mentioned material prop-
erty has a similar impact on the toolpaths generated for a spe-
cific patch. Regardless of the generation methods, a toolpath will
start/end in three circumstances: 1) at the start/end point of another
toolpath (toolpaths connected), 2) at the middle of another toolpath
(toolpaths overlapped), 3) at an empty area (toolpath disconnected).

Our experiments showed that for a specific patch, 1) and 2) will
always create leftover material at the intersection, and 3) will result
in a area not sculpted in the target geometry. As the number of
intersection locations is largely decided by the number of toolpaths,
we favor long toolpaths to reduce this aggregation. Two extreme
cases are shown in Figure 5, where one contains randomly gener-
ated short toolpaths on various directions and the other contains
only aligned toolpaths across the entire surface.

Toolpath direction (path-level). This parameter affects the tool-
path generation process, and is the most important one for defining
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Figure 5: Left: surface sculpted with 100 toolpaths of 18 mm
length in random direction, generated from 100 randomly
sampled points; Right: the same surface sculpted with 15
parallel toolpaths across the whole width of the patch.

the artistic style the user wishes to achieve. It affects the visual
effects of the sculpted stripe patterns on the final surface as well as
the cutting depth into the clay. We use a Laplacian-based algorithm
to generate evenly-distributed parallel-aligned toolpaths on top of
each path, and the details are explained in Section 4.3.

Tool direction (path-level). As shown in Figure 10, the three rota-
tion parameters define the local pose of the tool. Our experiments
confirmed that the aligning direction affects the precision of the
target surface, and the facing direction affects the amount of mate-
rial cut by each toolpath. These parameters together also affect the
final surface quality (Section 4.4).

Secondary parameters. Besides the parameters described above,
we also experimented with several other parameters, though these
were found to be less effective in influencing the design and fabri-
cation results. For completeness, we list them below:

• Density of toolpaths: This parameter needs to ensure that the
sculpted area covers thewhole patch. Beyond that, increasing
the density only increase optimization time with little gain
for a selected tool. However, this parameter is still exposed
to the user to compensate for any change in the tool.

• Inclining direction: This parameter does not affect the result
asmuch as the other two listed in the Tool direction categories,
as long as it does not cause any collisions.

• Tool shape: As shown in Figure 6, we experimented with var-
ious tool shapes. However, we do not allow for tool changes
during a sculpting task, so we exclude this parameter from
the design stage. Note that the same optimization pipeline is
applicable to different tool shapes.

Figure 6: Customized loop tool heads of different shapes.

3.3 Material Properties
As briefly mentioned in Section 3.2, we discovered that the viscosity
and plasticity of the clay affect, on a local scale, how the clay behaves
when the tool enters, sculpts, and exits it, which then directly affects
the final appearance of the sculpted model. There are two main
effects: 1) The clay sufficiently soft to be pushed by the tool during
the sculpting process. Although we use a thin 1 mm steel wire to
reduce this effect as much as possible, leftover clay is still noticeable
along the moving paths of the tool. 2) Due to viscosity, the forces
introduced by the tool cause a “pulling” effect when leaving the
clay, and can even cause failure to detach when the remaining
material is unable to withstand these forces. This effect mainly
happens between the clay subtracted by the tool and the clay model,
resulting in small accumulations on the target surface.

A complete modelling of the clay is extremely challenging, as
its material properties change over time when the contained water
evaporates gradually. However, for a thin (1 mm) tool made of steel
wire, we found that by limiting the cutting speed to within 3 cm/s to
8 cm/s we could reduce these visible defects to an acceptable level.
We thus decided to conduct the fabrication under these settings
and formulate the optimization using a purely geometric approach,
resolving robot motion and collision issues without involving any
simulation of the material behaviour.

3.4 Style as an Aesthetic Feature
One of the core contributions of our work is to deviate from a
conventional path planning task by bringing the designer into the
loop—to embed the user’s design expression as the sculpting styles
in an automated robotic process. It provides a different perspective
to robotic processes by adding manually-controlled elements into
the “design-to-fabrication” process, and provides users with more
freedom and control over their design expressions. Although not
designed to be a computer-human interaction system, our system
embeds design preferences and choices in a predefined manner.

While conventional CNC milling prefers precision, our system
favours the possibility of creating various visual styles with a min-
imum amount of effort. It identifies a set of design parameters
abstracted from fabrication experiments, and transfers the designed
styles from the digital environment to physical artefacts with ease.
As evaluating the aesthetics of a sculpt is difficult and inherently
subjective, we leave it to the user to realize their creativity and in-
tention by providing them with a considerable amount of freedom
to explore this design space.

Figure 7: Sculpting styles created by RobotSculptor with dif-
ferent decomposition schemes and toolpaths.
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Figure 7 shows the sculpting style variations of a torso model
created by different decomposition schemes or toolpaths. The visual
styles formed by the sculpting toolpaths define a unique feature of
the sculpting process. We believe these style variations provide new
opportunities to explore new ways of robot control and open up
discussions in human-robot interaction. More details are discussed
in Section 4 and Section 5.

4 USER-DRIVEN TOOLPATH GENERATION
4.1 Design Parameters
One important goal of our research is to embed human design
choices and expressions as “styles” into the automated robotic fab-
rication. This requires the system to maintain a certain magnitude
of precision, and at the same time deviate from the homogeneous
look typical for the results of CNC milling. We rely on the key
parameters selected based on the design experiments described
in Section 3.2 to allow users to generate toolpaths creatively and
transfer essential features into the fabrication process. Following
the pipeline described in Section 1, we assume the input mesh as
conceptually quadrilateral (for ease of geometry processing, we
only define 4 corners + 4 edges to the mesh, whatever the true
shape is) and interpret the selected 5 parameters into variables that
the user can access and modify in the GUI:

(1) Locations of free strokes drawn for model decomposition;
(2) Offset distance at the overlapping area between patches;
(3) Locations on patch boundaries as conceptual “corners”;
(4) Distribution of start and end points of the toolpaths;
(5) Number of toolpaths generated on each patch;

(1), (2) are patch-level parameters and relate to the Decomposition
process; (3), (4), (5) are path-level parameters and relate to the Tool-
path Initialization process. We will explain both of them in detail
below.

For both CNC milling and our system, one necessary step of the
toolpath generation is to develop toolpaths that can cover the whole
surface of the input model. While common milling tasks use widely
applied strategies including parallel, scallop, radial and flow-line,
we require a different procedure to generate toolpaths as the robot
end effector (i.e. the customized loop tool) is not axisymmetrical,
as normal milling bits are. The normal of the cutting plane must be
aligned towards the cutting direction for an effective cut (though it
doesn’t need to be aligned fully), so standard strategies would be
insufficient.

Therefore, we developed a global-to-local strategy that decom-
poses the input model into small patches that can incorporate differ-
ent sculpting intent. Treating each patch individually, we generate
toolpaths based on the isolines of a scalar field, which in turn is
defined through user-provided boundary conditions for each patch.
If no decomposition is given, the system will treat the whole mesh
as a single patch, and conducts the toolpath generation over the
whole area.

4.2 Decomposition
The Decomposition aims to allow the user to select different areas
that can be treated separately for the toolpath generation. We de-
veloped a GUI to facilitate this task. The user can draw strokes

Figure 8: Left: distance field calculated from the drawn
strokes; Middle: decomposed patches without overlapping
boundaries; Right: decomposed patches with overlapping
boundaries of 15 additional triangle loops.

on the model using a mouse, and the system will compute a dis-
tance field for each disconnected stroke. This field measures the
distance between mesh vertices and the strokes, and later helps to
compute separate surface patches using a priority queue based on
the measured distances. Once the result is visualized, the user can
accordingly decide to either draw additional isolated strokes to cre-
ate more patches, or to intersect existing strokes with new stroke(s)
to modify the shape of the corresponding patches (Figure 8). See
also the supporting video.

Once the patch-geometry has been defined, the user can modify
the overlapping areas around the borders where patches intersect.
As the dimension of the input model may vary, this is achieved by
adjusting the number of facets in the overlap areas (Figure 8). This
adjustment aims to prevent the aggregation of entry/exit locations
of the loop tool, which will produce inferior surface quality due to
the material behaviour discussed in Section 3.3.

4.3 Initialization
The Initialization process aims to provide intuitive toolpath genera-
tion for each decomposed patch.We treat each patch as a “quad-like”
patch and ask the user to provide four “cutting” points near the
boundary of each patch. These points are used to segment the closed
boundary curve into four segments, i.e. two facing pairs. We assign
the vertices of the two segments of one of the pairs with the value
0 and 1 respectively and assign that of the other pair with values
interpolated from 0 to 1.

To generate the isolines, we use a technique similar to those
described in Ma et al. [2020] and [Pereira et al. 2014]. For each
surface patch with 𝑛 vertices, we compute a scalar field by solving
the common Laplacian equation with boundary constraints:{

Lz(𝑥) = 0, 𝑥 ∈ Ω

z(𝑥) = z0 (𝑥), 𝑥 ∈ 𝜕Ω
(1)

where L is the 𝑛 × 𝑛 discrete Laplacian and x are the coordinates of
the mesh vertices. Variables z(x) and z0 (x) are vectors of per-vertex
values of all the vertices and boundary vertices, respectively. Those
elements of z that corresponds to the interior vertices are unknown,
while the elements corresponding to the boundary vertices are
given as constraints. We allow the user to modify the path direction
and orientation by adjusting the position of the cutting points, the
distribution of the assigned values, and the number of toolpaths
(Figure 9).

We then interpolate a series of isolines from the scalar field. The
user can set parameters interactively to find a path initialization
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Figure 9: Toolpath initialization: Left &Middle: same cutting
point location, different distributions of assigned boundary
values; Right: different cutting point location, distribution
of assigned boundary value and density of paths.

that matches his vision. We found that an overlap of more than
30% of the tool width between adjacent paths is needed to allow for
the optimization to modify the paths sufficiently in order to avoid
collisions or match the target geometry more closely.

4.4 Tool Direction Modification
Although the Decomposition and Initialization processes success-
fully help in transferring the design intention to initial toolpaths, we
can further improve our initialization through local adjustments of
the tool direction. While we can generally rely on the optimization
to compute the results, experiments showed that better initialization
would often lead to better surface quality and faster optimization,
especially in high curvature areas where local minima occur.

Figure 10: During a sculpting movement, the tool pose is de-
fined by three vectors: the facing direction, the aligning di-
rection, and the inclining direction.

As the loop tool has 6 DoF, we define the 3 directions that are not
constrained by a given toolpath (in fact, a series of tool positions) as
facing direction, aligning direction and inclining direction (Figure 10).
A milling bit has no facing direction as it always cuts at the width of
the tool’s diameter. For the loop tool, the cutting profile depends on
the projection of the tool profile to the material along the toolpath
direction and can be adjusted by its relative angle to the tangent
direction of the toolpath.

For a sampled tool location along a toolpath, we initialize the
inclining direction using the normal direction of the patch, and
project the tangent direction of the toolpath to the tangent plane of
the patch at the referenced point to initialize the facing direction.

Additionally, we re-align some of the tool’s facing directions
perpendicular to the averaged principal curvature [Meyer et al.
2003] directions near high curvature areas:

n𝑓 =
1
𝑁

∑
𝑟<𝑟𝑛𝑒𝑎𝑟

n𝑝 (2)

Figure 11: Local adjustment of the facing direction using cur-
vature information. The fabrication results illustrate notice-
able improvements of the surface quality.

where 𝑁 is the number of samples of the principal curvature n𝑝
within a pre-defined sphere of radius 𝑟𝑛𝑒𝑎𝑟 around the tool location.
We illustrate the benefits of this post-processing step in Figure 11.

With the above procedures, we obtain a general initialization of
both toolpaths and tool directions. However, there is no guarantee
that these results can be executed with a specific robot without
any collision or reachability problems. It would thus require the
user to manually modify the paths iteratively for a specific robot
in use to resolve all collision issues, or use a simplified version /
allow certain collisions (Figure 15 middle, Figure 16 upper right)—
this one of the main reasons that led us to develop the optimization
process described in Section 5.

5 OPTIMAL PATH PLANNING
The toolpath generation in the previous sections defines a path
that sweeps the target surface closely and expresses the aesthetic
preferences of the user. It is, however, not guaranteed to be feasible,
in the sense that it can be executed by a given robot without causing
collisions or exceeding the robot’s reach. Therefore, given a patch of
the target surface and the associated toolpaths (collectively referred
to as input toolpath in this section), we need to find a robot trajectory
that 1) is feasible, 2) produces a cut surface that best approximates
the target surface and 3) maintains the overall aesthetics of the cut
surface implied by the input toolpath.

We follow an approach similar to the one proposed by Duenser
et al. [2020] for computing cut trajectories for an elastically de-
formable tool, manipulated by a two-armed robot. At the core of
this approach lies the formulation of an optimization problemwhich
matches the surface swept by the tool during movement (toolsur-
face) with the surface of the input model (target shape). In particular,
we use similar formulations for the physical model of the system,
the final primary objective, the constraint objectives and the last two
of the secondary objectives, as introduced below.

Model description. The robot trajectory is represented through a
sequence of robot poses (trajectory points), each defined by the set
of joint angles 𝒒𝑖 , collectively forming the full trajectory 𝒒 = (𝒒𝑖 ).
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Figure 12: An overview of the main components of the
optimization model. The robot is shown in its rest pose,
from where it traverses towards the workpiece (toolpath
Sfree and Sinter ) and performs the cut (Scut ). The robot then
moves back to its rest pose—although typically it would loop
around and perform a number of successive cuts, optimized
simultaneously, to carve out the entirety of a given surface
patch.

In case a turntable is used, we simply view it as an additional robot
joint and include its orientation in 𝒒. The tool is rigidly attached to
the robot end effector andmodeled by its center line 𝒄𝑖 , such that the
path swept by the tool forms the toolsurface S. Between the discrete
steps of the trajectory we approximate this surface as piecewise
linear. Using a kinematic model for the robot, the toolsurface is
then fully defined through the joint angles as S = S(𝒒). For a full
description of the setup, we further consider the target shape T
and its currently processed subsection T ∗, the current shape of
the workpiece W, as well as any other obstacles O in the scene,
such as the turntable. If the target mesh is split into several patches,
the shape of the workpiece is updated after applying each of the
corresponding cuts. See Figure 12 for an overview of the simulated
setup.

Optimization problem. Similarly to Duenser et al. [2020], we
formulate an unconstrained optimization problem of the form

min
𝒒

𝐸 (𝒒) = 𝐸prime + 𝐸constr + 𝐸𝑠𝑒𝑐 , (3)

where all physical constraints are enforced through penalty terms,
collectively denoted 𝐸constr . The principal design objective 𝐸prime
defines a cost for the distance between the toolpath and its tar-
get, while 𝐸sec collects several secondary objectives, as laid out
in more detail below. We solve this minimization problem using
Newton’s method with line search and a Levenberg-Marquardt type
regularization.

The trajectory we optimize, and correspondingly the toolsurface,
consists of several distinct, predefined subsections: One or more
cut portions Scut , in accordance with individual cuts of the input
toolpath, which are designated to carve out the target shape. Transi-
tional portions Sfree , which describe the free movement in-between
individual cuts, as well as from and to a fixed robot rest pose. And
finally, intermediate portions Sinter , which are short connecting

sections at the interface between Scut and Sfree . While the toolsur-
face of these sections may take part in cutting through the material,
it is not optimized to match the target shape.

5.1 Primary Objective and Constraints
Surface Matching. The primary objective 𝐸prime measures the

closeness between the toolpath and the given target. We view this
as a non-rigid surface registration problem and match the target
surface T ∗ with the toolsurface Scut . Starting from a dense set of
sample points on the target surface T ∗, we penalize the absolute
distances to their respective closest points on the toolsurface Scut .
In principle, a simple quadratic penalty could be used for this. Al-
though in a case where portions of T ∗ can not feasibly be cut, this
choice can lead to an undesirable overemphasis on these regions.
Instead, we turn to a smooth step function of the form

𝐻𝜏 (𝑑) =
{
3
(
𝑑
𝜏

)2 − 2
(
𝑑
𝜏

)3 0 ≤ 𝑑 < 𝜏

1 𝑑 ≥ 𝜏 .
(4)

Hτ

dτd

P𝜆

𝜆

Figure 13: Penalty functions on distance used for collision
avoidance (left) and surface matching (right).

This function acts similar to a quadratic penalty for a distance 𝑑
close to zero, but smoothly transitions to a constant penalty over
a transitional region of size 𝜏 (Figure 13, right). Thereby, regions
that are definitely uncuttable, i.e. with a distance larger than 𝜏 , are
simply ignored.

Initialization Procedure. Due to the relatively fine-scaled geome-
try of the toolsurface and its very low rigidity, the outlined surface
matching is prone to a large number of undesirable local minima. It
therefore relies on a fairly good initialization, for which we use the
input toolpath. To this end, we split the optimization process into
two distinct stages. During the first, we do not apply the surface
matching objective as the primary objective. Rather, we match the
cut portion of the toolpath to the input toolpath, with regards to
the position and orientation of the tool, using a quadratic penalty.
Once a toolpath is found which resembles the input path as close as
possible but has a feasible trajectory, we gradually drop this initial
objective and apply surface matching instead. Using the input tool-
path as initialization also establishes the desired global path layout,
and in our experiments we found that this layout was generally well
preserved during the surface matching stage, even once the initial
objective had been removed entirely. At the same time, matching
only the toolsurface provides a larger degree of freedom for the
robot trajectory, allowing it to gracefully avoid collisions even in
challenging situations.
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Physical Limits. The constraints we consider are the robot’s lim-
itations on joint angles, as well as collisions of the robot and the
tool. These collisions are namely: 1) self-collisions of the robot, 2)
collisions between the robot and the workpieceW and obstacles
O, 3) collisions between the toolsurface S and the obstacles O, 4)
collisions between Sfree and the workpiece W, and 5) penetration
of Scut and Sinter into the target shape T .

For the implementation of robot collisions, the robot model is
equipped with a number of spherical collision primitives, typically
eight per link. From each collision primitive the signed distance
is computed to all of the other collision spheres, as well as to the
closest point on each of the objects in the scene. The latter are
accurately represented through triangle meshes. A negative sign of
the distance thereby signifies penetration. Similarly, proximity of
the toolsurface S is evaluated on a dense set of sample points on
the surface, for each of which the smallest distance to the relevant
objects is computed. We then penalize these distances with the
one-sided quadratic function

𝑃𝜆 (𝑑) =
{
(𝑑 − 𝜆)2 𝑑 < 𝜆

0 𝑑 ≥ 𝜆,
(5)

where 𝜆 is a safety margin or tolerance (Figure 13, left). The same
type of penalty is applied directly to the joint angles of the robot.
The weighted sum of all penalties constitutes the full constraint
objective 𝐸constr , whereby the weights are chosen to be large com-
pared to any of the remaining objectives, such that the constraints
are enforced rigidly.

5.2 Secondary Objectives
We identified several additional criteria for the quality and practi-
cability of a toolpath, enforced through additional objectives 𝐸sec .

Orthogonal tool orientation. For the fabrication process, it is fa-
vorable to keep the cutting direction orthogonal to the tool plane.
While a cut can be produced when the tool plane is aligned with
the cutting direction, this would produce only a narrow slit, often
without fully removing a portion of clay from the workpiece. There
is a high risk the clay will subsequently reattach, effectively un-
doing the cut. By only cutting orthogonal to the tool plane, long,
narrow shavings are produced which can be removed immediately.
Let 𝒄𝑖 𝑗 be the sample point 𝑗 of the tool of time step 𝑖 . For each 𝒄𝑖 𝑗
we penalize the deviation of the tool facing direction u𝑖 from the
local cut direction v𝑖 𝑗 , for those sample points on the tool engaged
in the cutting, as

𝐸
𝑖 𝑗

𝑜𝑟𝑡ℎ
= 𝑙𝑖 𝑗 sin4 (∠(u𝑖 , v𝑖 𝑗 )) 𝐻∗

𝑎,𝜏 (𝑑W,𝑖 𝑗 ) . (6)

The symbol ∠( · , · ) is the angle spanned by two vectors. The
cut direction is computed as v𝑖 𝑗 = 1/2 (v̂− + v̂+), where v− =

𝒄𝑖, 𝑗 − 𝒄𝑖−1, 𝑗 , v+ = 𝒄𝑖+1, 𝑗 − 𝒄𝑖, 𝑗 , and ·̂ represents a normalized vector.
The associated step size 𝑙𝑖 𝑗 = 1/2 (∥v−∥ + ∥v+∥) is used to weight
the objective. Finally, the last term of the equation represents a
weight in the range [0, 1] indicating whether the sample point is
inside or close to the workpiece W and therefore is relevant for
the cut. Herein 𝐻∗

𝑎,𝜏 (𝑑) = 1 −𝐻𝜏 (𝑑 − 𝑎) is an inverted smooth step
function shifted by a tolerance 𝑎, and 𝑑W is the signed distance
between the sample point andW.

Smooth discrete toolpath. To ensure smoothness of the discretized
toolpath we penalize the angle spanned by the piecewise linear
path of a tool sample point at each time step through

𝐸
𝑖 𝑗

𝑠𝑚𝑜𝑜𝑡ℎ
= 𝑙𝑖 𝑗 𝛼

2
𝑖 𝑗 𝐻

∗
𝑎,𝜏 (𝑑T,𝑖 𝑗 ), (7)

where 𝛼𝑖 𝑗 = ∠(v−, v+). This angle can essentially be viewed as the
ratio between the local, approximated curvature of the toolpath
(i.e. 𝛼𝑖 𝑗/𝑙𝑖 𝑗 ) and the sampling density (given by 1/𝑙𝑖 𝑗 ). Thus, the
objective does allow for an arbitrarily large curvature of the path,
provided that the temporal resolution is adequate locally. As above,
we weight the objective with the path length 𝑙𝑖 𝑗 , and also according
to the closeness 𝑑T to the target shape, such that only portions of
the cut are affected which may be visible in the final object.

Limited joint angle step size. While for the optimization we as-
sume the toolpath is given by linear interpolation of the tool geom-
etry at discrete time steps, during fabrication the robot trajectory
is interpolated linearly in joint angle space. For the 𝑘𝑡ℎ joint of the
robot, a step of 𝛽𝑖,𝑘 = 𝒒𝑖,𝑘 − 𝒒𝑖−1,𝑘 in joint angle space induces a
maximum interpolation error of

𝜖𝑖, 𝑗,𝑘 = 𝑟𝑖, 𝑗,𝑘
(
1 − cos

( 𝛽𝑖,𝑘
2

) )
, (8)

where 𝑟𝑖, 𝑗,𝑘 is the distance between a tool sample point 𝒄𝑖, 𝑗 and the
𝑘𝑡ℎ robot axes. For simplicity, we assume a rough, fixed estimate 𝑟𝑘
for this distance for each joint angle, and penalize the corresponding
approximation error through

𝐸
𝑖,𝑘
𝑗𝑜𝑖𝑛𝑡

=
(
𝑟𝑘

(
1 − cos

( 𝛽𝑖,𝑘
2

) ) )2
. (9)

Limited tool step size. Collision avoidance of the toolsurface is
based on a fixed number of sample points. In order to maintain an
adequate sampling density, it is necessary to limit the step size of
the tool. Again, we simply apply a one-sided quadratic penalty

𝐸
𝑖, 𝑗
𝑠𝑡𝑒𝑝 = 𝑃−𝛿

(
−
𝒄𝑖, 𝑗 − 𝒄𝑖−1, 𝑗

 ) (10)

to roughly ensure an upper bound of 𝛿 .

Quadratic regularization. Finally, we apply a weak quadratic
regularization to the tool step size, such that all portions of the
toolpath which are not governed by any of the above objectives
remain short and smooth:

𝐸
𝑖, 𝑗
𝑟𝑒𝑔 =

𝒄𝑖, 𝑗 − 𝒄𝑖−1, 𝑗
2 . (11)

6 RESULTS
To demonstrate the versatility of our system, we designed and fabri-
cated four prototypes featuring different geometric characteristics.
The decomposition of the input model by drawing strokes in the
UI and generating toolpaths for each patch takes around 0.5 h on
average, depending on the number of decomposed patches and
the number of attempts made to match the user’s intention. The
optimization takes 1 h to 4 h on average for the models we present
here (torso, eye, face, 3DMöbius ring). The fabrication takes around
1 h on average with a joint velocity of 1 rad/s for the leading axis
(the movej command [Robots 2015]). After fabrication, the clay
needs around one day to dry until its surface solidifies, and at least
two days to be fully dried. The optimization framework is imple-
mented in C++, making use of the Eigen library [Guennebaud et al.
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2010] for matrix algebra. Searches for closest points on surfaces,
as required for collision avoidance, are performed through an axis
aligned bounding box tree, using the libigl library [Jacobson et al.
2018]. This operation accounts for the largest part of the computa-
tional costs in the procedure, with roughly 50%. Another 15%-20%
of costs can be attributed the forward kinematics of the robot, and
the respective first- and second order derivatives. For context, it
should be noted that collisions between toolsurface and target sur-
face are tested on 140 sample points per trajectory point, and the
distance function for surface matching is evaluated with similar
density. Computation times for all examples are reported in Table 1,
obtained on a standard PC with a 3.4GHz Intel Core i7-3770 CPU.

We also refer to the supporting video, which shows the fabrica-
tion setup and the physical results.

Figure 14: Left: our customized tool attached to the UR5;
Right: the Arduino-controlled turntable.

6.1 Fabrication Setup
We designed a custom loop tool with a metal handle and a 3D
printed ABS base. For the examples shown in this paper, we chose
a rectangular profile with 10 mm cutting width and 30 mm cutting
depth, made of 1 mm steel wire. The cutting depth is limited by the
stiffness of the wire to avoid visible deformation during a cutting
process. The loop is screwed onto the customized handle (10 mm×
10 mm cross-sectional area), which is attached to a UR5 through
the ABS base.

We use a custom turntable controlled by an Arduino Uno to
compensate for the limited reach of the robot. It rotates in both
directions with 1.8◦ resolution, and acts as the 7th axis of our
system to rotate the model to a position within the robot’s reach.
(Figure 14).

6.2 Fabricated Models
Beside the torso model (Figure 7), the simplest of our examples is
the eye model (Figure 15), which contains concave features that
are nearly impossible to generate collision-free toolpaths for. We
made several attempts through our CAD-modelling process, but
fell back to use a smoothed version of the model as the collisions
cannot be fully resolved. However, our optimization component
from the RobotSculptor resolves all the collisions and generates
toolpath trajectories that achieve fabricated results with reasonable

Figure 15: The eye model. Left: Input geometry; Middle:
model by executing CAD-modelled toolpaths; Right: model
by executing trajectories generated from RobotSculptor.

quality, even with a customized tool that is oversized for the details
around the iris area.

We further use our interactive, user-guided design method to
decompose and generate toolpaths for a face model that contains
more challenging geometric features around the eye area (concave
feature with large curvature) and the nose area (sharp edges). Simi-
larly, CAD-modelled toolpaths failed to resolve collisions around
the eye corner, but our RobotSculptor system successfully fabricates
the different styles we desire(Figure 16).

Figure 16: Sculpting results of the facemodel. Top-left: input
geometry; Rest: initialized toolpaths and the resultswith dif-
ferent styles by executing robot trajectories generated from
RobotSculptor.

Our system even allows the use of different parts of the tool for
the sculpting process. In the 3D Möbius ring example (Figure 17-
right), we use the bottom blade to sculpt the outer patches, and
the side blade for the inner patches which are inaccessible to the
bottom blade due to collision issues. However, we noticed two lim-
itations: 1) Models with a thin connection to the base are likely
to be deformed during the fabrication, which causes lower preci-
sion. In this example, we compensate it by manually supporting
the model. 2) Sculpting with the side blade, the maximum cut depth
naturally cannot exceed the length of the tool. This can become a
limiting factor when cutting the innermost portion of the ring, and
constraints the possible size of the model.
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Figure 17: Left: Reachability limitation from inadequate side
blade length. Right: Illustration of model areas cut by side
blade or bottom blade.

Preference for using a specific edge of the tool can be set by
simply choosing the appropriate tool-local frame used for the ini-
tialization phase. The subsequent path optimization on the other
hand is agnostic to the notion of distinct blades. That is, it treats
the entire tool as one blade. Similarly to the overall path layout, we
find that any preferences implied by the initialization are typically
well preserved.

As shown in Figure 17 (left), we verify the reachability limitation
by fabricating two Möbius models with different thickness.

model # patches avg traj. pts/patch opt. time fab. time

Torso 5 334 1h 57m 7m

Face
6 445 4h 11m 26m
7 473 4h 30m 31m
9 412 5h 33m 33m

Eye 3 624 1h 21m 16m

Möbius 8 339 1h 39m 31m
Table 1: Statistics of presented examples.

7 CONCLUSION
We have presented an interactive design and fabrication system that
allows users to design different styles for sculpting clay models with
a 6-axis robot. We identified and extracted a set of key parameters
from a series of sculpting experiments and exposed them to the
users in an interactive user interface we developed. The interface
allows the user to decompose the input mesh into desired patches
by drawing free sketch strokes and embed their design expressions
as different sculpting styles individually by generating a set of
corresponding initial sculpting toolpaths.

After the toolpaths have been initialized, our system conducts
optimal path planning to resolve robot collision and reachability
issues while still maintaining a maximum match to the given input
surface. To obtain a higher success rate, we also added an Arduino-
controlled turntable and integrated it into the optimization pipeline.
We have demonstrated the capacity of our system through a set of
fabricated desktop-size clay models: torso, eye, face, and 3D Möbius
ring. Moreover, as evidenced by the wide variety of styles for the
same model, our system successfully enlarges the magnitude of
expression incorporation during the design stage.

7.1 Limitation and Future Work
It is the combination of initialization and optimization that makes
our system not only a robotic extension of the human hand, but
a system with certain intelligence that fulfills certain design in-
tentions. Yet we still have a long way to go to merge the system
seamlessly in the human endeavours of design and creation. Many
exciting questions are still left open for future work.

First, our system utilizes a subtractive strategy for the sculpting
process assuming the clay to be rigid. This assumption works well
when sculpting thick areas, but may cause imprecise results due to
material deformation at thin sculpted areas (e.g. the nose area in
the face model). We plan to investigate methods that incorporate
material simulation during the optimization for a better prediction.
This will contribute to controlling small accumulations caused by
the material deformation, and the visual intensity of the styles.

Second, limited by both material properties and the optimiza-
tion framework, our work only touches the sculpting styles in the
manner of stroke density and directions for selected sub-areas,
while many other possibilities exist for “artistic expressions”. We
plan to investigate different initialization strategies to enlarge our
toolpath generation library to support more styles, and enrich the
optimization component accordingly.

Third, our current system can only predict the sculpted geom-
etry after running the toolpath optimization. As the optimization
process is computationally demanding, the current pipeline cannot
present a predicted representation of the final appearance to the
users instantly. We plan to investigate different methods that can
approximate the final appearance independent of the optimization
so as to enhance the design process with instant feedback.

Fourth, compared to human artists who conduct a combination
of various modelling techniques during an entire sculpting pro-
cess (additive, subtractive, formative), our system only utilizes the
subtractive process, using one type of tool. While combining both
additive and subtractive techniques in the fabrication process is
not difficult, predicting the material behaviour under formative
processes (modelling, pushing) to fulfill the optimization tasks will
require a simulation component, additional to the need mentioned
in the first point above.

Fifth, we developed the customized UI for non-expert users to
work on non-fired clay only. However, similar robotic processes
have much larger application, such as foam wire cutting, wax cut-
ting, or even fired clay, where the targeted user group may also
extend to experts. As we decoupled the Decomposition & Initializa-
tion and the Optimization components, migrating the former into
existing CAD software (for instance, Rhinoceros) and keeping the
optimization (implemented in C++) as it is for computational effi-
ciency is feasible. Applying the current path planning framework
to other materials and processes would require additional physical
tests and tool designs.
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