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Fig. 1. We present a method for optimizing the kinematics of robot characters, supporting spatial linkages with arbitrary kinematics including loops and
overactuation. Our method enables the rapid design of expressive robotic characters, through optimally placing passive and active degrees of freedom.

The kinematic motion of a robotic character is defined by its mechanical
joints and actuators that restrict the relative motion of its rigid components.
Designing robots that perform a given target motion as closely as possible
with a fixed number of actuated degrees of freedom is challenging, especially
for robots that form kinematic loops. In this paper, we propose a technique
that simultaneously solves for optimal design and control parameters for a
robotic character whose design is parameterized with configurable joints.
At the technical core of our technique is an efficient solution strategy that
uses dynamic programming to solve for optimal state, control, and design
parameters, together with a strategy to remove redundant constraints that
commonly exist in general robot assemblies with kinematic loops.We demon-
strate the efficacy of our approach by either editing the design of an existing
robotic character, or by optimizing the design of a new character to perform
a desired motion.
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1 INTRODUCTION
The design of robotic characters whose motion is driven by complex
mechanisms that in turn are driven by several actuators remains an
iterative trial-and-error process. Despite recent advances in compu-
tational design, we lack techniques that are applicable to complex
robot designs with arbitrary kinematic structures. In particular, the
optimization of linkages with spatial and closed-loop kinematics
remains underexplored.

In this paper, we propose an optimal design technique that takes
an initial design of a fully or overactuated robot as input, param-
eterized with a set of configurable joints. With a set of high-level
objectives, we can either edit the design to change a robot’s function,
or optimize a parameterized version of a new robot to achieve a
desired motion as closely as possible.
While it is relatively straightforward to come up with an initial

design of a robot’s kinematics, it is non-trivial to predict the effect
of a local change to the motion of a character, especially for designs
that contain kinematic loops and are driven by multiple actuators.
Furthermore, optimizing the kinematics for motions with long time
horizons results in large, numerically challenging optimization prob-
lems. To allow for an iterative design process, it is crucial that a tool
produces solutions efficiently and robustly.

Our technique addresses these challenges by enforcing kinematic
constraints, efficiently identifying optimal design and control pa-
rameters by sequentially solving a quadratic approximation of the
constrained design-control problem with dynamic programming.
At the technical core of our technique is a reduction of the quadratic
approximation to a discrete-time optimal control problem, utilizing
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the recursive structure in the problem formulation, together with
subspace projection to remove constraints while preserving this
structure. Because constraints that enforce the restricted relative
motion at mechanical joints, actuators, and configurable joints can
lead to a set that contains redundancy, we propose an elimination
technique that is agnostic to the kinematics of the specific robot.

As we demonstrate with four examples, our system aids with the
iterative design and editing of complex robotic characters where
the underlying design space is challenging to optimally navigate
with a manual trial-and-error approach.

Succinctly, our contributions are

• a parameterization of a robot’s designwith configurable joints
that enables rapid design iteration.

• a design optimization that eliminates the redundancy in con-
straints, and is therefore agnostic to the robot kinematics,
interfacing with general fully- or overactuated input.

• a reduction of the local approximate design-control to a
discrete-time optimal control problem that enables an effi-
cient, scalable, and robust solve using dynamic programming.

2 RELATED WORK
Mechanism Design. Computational mechanism design problems

have been studied both within and outside the computer graphics
community. Methods for synthesizing and editing linkages, given a
periodic animation input have been developed [Bächer et al. 2015;
Coros et al. 2013; Thomaszewski et al. 2014]. However, these works
focused on single-actuator systems which were primarily planar.
There has also been some work targeting spatial (3D) mecha-

nisms. Zhang et al. [2017] presented a method for retargeting 3D
mechanisms into a prescribed bounding volume, while maintaining
their function. Cams have also been explored as a method for pro-
ducing expressive spatial motions [Cheng et al. 2022, 2021; Zhu et al.
2012]. Song et al. [2017] developed a design tool for spatial single-
actuator wind-up-toy mechanisms. Huber et al. [2021] consider the
discrete design problem of connecting actuators to functions of an
animatronic head.
Tools for visualizing and prototyping linkages have been devel-

oped by the graphics community [Koo et al. 2014; Mitra et al. 2010].
Liu et al. [2022] analyze the worst-case rigidity of linkage assem-
blies. There is also work towards recovering the kinematics of a
mechanism from a scan [Lin et al. 2017] or from video input [Ceylan
et al. 2013]. Related to our parameterization of robot designs, Schulz
et al. [2014] developed a tool for the parameterized design of a broad
range of objects.

Design tools for mechanisms that exploit compliance have been
presented [Megaro et al. 2017a,b; Skouras et al. 2013; Zhang et al.
2021]. There has also been some work targeting the control [Hosh-
yari et al. 2019] and design [Ebrahimi et al. 2019] optimization for
dynamic systems.
Maloisel et al. [2021] solve a design optimization problem for

spatial mechanisms, asking for a target region to be reachable
and free from singularities. However, this method assumes a non-
overactuated mechanism with the same number of objectives as
actuators, and their method does not scale well to high-DoF systems.

Optimal Design of Robots. A number of methods have been devel-
oped for the optimal control and design of fixed-base and mobile
robots with both legs and wheels [Desai et al. 2017; Geilinger et al.
2018; Ha et al. 2018a, 2016, 2017, 2018b]. Interactive design tools for
designing legged robots have been proposed [Megaro et al. 2015;
Schulz et al. 2017], also for authoring expressive motions [Desai
et al. 2019]. Feng et al. [2019] presented a design tool for skinned
quadruped robots. More specific design optimization problems have
also been considered, including quadruped legs [Fadini et al. 2021]
and 7-DoF robot arms [Hwang et al. 2017]. However, all of these
works are restricted to articulated body kinematics, requiring a
tree-like kinematics structure.
There has been some work targeting the design of closed-loop

robot mechanisms. De Vincenti et al [2021] considered the design
optimization of a planar hind leg mechanism for a robot quadruped,
and Borisov et al. [2021] studied the computational design of under-
actuated grippers.
Recent work has also considered the co-optimization of robot

design and robot controllers [Dinev et al. 2022; Xu et al. 2021a,b;
Zhao et al. 2020]. Spielberg et al. [2017] solved a parametric trajec-
tory optimization problem, where parameters and trajectories were
simultaneously solved for. Du et al. [2016] solved the design and
control problem for multicopters. Learning-based approaches have
also been explored [Bjelonic et al. 2023; Schaff et al. 2019].
In contrast, we propose a kinematic design optimization that is

applicable to robots with arbitrarily complex kinematic loops, recast-
ing the design as a control problem to efficiently co-optimize design
and control parameters using dynamic programming, and introduc-
ing a technique to remove redundancy in constraints to guarantee
well-posedness of the problem for generic fully- or overactuated
input.

Parallel robots. In the robotics community, there has been sig-
nificant study devoted to understanding and optimizing parallel
robot mechanisms [Merlet 2005, 2006]. These robots generally have
a single end effector which is driven by multiple parallel kinematic
chains. Methods for optimizing specific robot designs have been
developed [Merlet 2002; Pierrot et al. 2009; Wu et al. 2014], including
overactuated systems [Leguay-Durand and Reboulet 1997]. Collard
et al. [2009] study the optimal design of closed-loop multibody sys-
tems in a general setting, but enforce constraints using a soft penalty,
and need to tune weights to obtain a good trade-off with the design
objectives. There has also been some work developing more general
methodology for parallel robot design [Kelaiaia et al. 2023; Lou et al.
2013; Miller 2004; Zanganeh and Angeles 1997].

Our work differs in that we can handle arbitrary robot kinematic
structures, and can track an arbitrary number of objectives—with
a least-squares solution being returned if the objectives cannot be
perfectly tracked.

Optimal control. The problem of simultaneously optimizing de-
sign parameters, together with state and control trajectories, can be
viewed as a parameterized optimal control problem, for which two
general solution strategies exist: In a first strategy, an optimal control
problem is solved in an inner loop for a fixed set of parameters. By
extracting sensitivities of the solution w.r.t. the parameters [Büskens
and Maurer 2001], we can then solve for optimal parameter values
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Fig. 2. Overview.We parameterize the design of a robot by adding a set of
configurable joints, illustrated here with the right hip of Kickbot, a humanoid
robot: To parameterize the axes of the two revolute actuators (red cylinders),
we add three configurable spherical joints (blue spheres) between the torso,
the two actuators, and the upper leg (Initial design). Our technique then
outputs optimal design parameters for the three configurable joints and
optimal control parameters for the two revolute joints so that the robot
achieves a target performance as closely as possible (Optimized design).

in an outer loop [Amos et al. 2018]. However, this strategy requires
that the inner optimization has a solution where all constraints are
satisfied. For the kinematics design problem we consider here, this
cannot be guaranteed as explained below. Alternatively, as done
in this work, the parameters can be treated as an integral part of
a single, larger optimal control problem by treating them as con-
stant state variables with unknown initial conditions [Kobilarov
et al. 2015; Oshin et al. 2022]. This second solution strategy allows
constraint violations at intermediate iterations.

One of our core contributions is the reduction of a local quadratic
approximation of our nonlinear constrained design problem to a
standard discrete-time optimal control problem that we can solve
efficiently using differential dynamic programming, exploiting the
inherent sparsity along the time horizon [Jacobson and Mayne 1970;
Rawlings et al. 2017]. Our solution strategy can be understood as
an instance of the second class of strategies to solve parameterized
optimal control problems.

3 OVERVIEW
We take as input to our pipeline a robot kinematics model. To allow
for the robot design to be optimized, we introduce configurable
joints. These are similar to actuators, but their “control parameters”
can only be set once for a particular animation. We support config-
urable versions of all common joint types, allowing for a wide range
of design problems to be defined. Our processing is illustrated in
Fig. 2.

With our modeling, we target two use cases: editing of an existing
robot design, and the design of new robots. Note that in both cases
we assume that the desired motion of the robot is known at design
time.
For the former, we start with a parameterized robot model per-

forming an animation. We run a kinematics simulation on the exist-
ing animation and extract trajectories of points of interest on the

robot. By representing these trajectories with spatial spline curves,
or applying affine transformations, we can then specify a new mo-
tion target that we can achieve by optimizing the design parameters
of our configurable joints as also the control parameters of our
actuators.
For the latter, a user first creates an initial design of a robot, to-

gether with a target motion that can either come from a rigged
character or mocap. We then optimize the design and control pa-
rameters of the configurable joints and actuators to approximate the
target motion as closely as possible. This second use case enables
fast iteration to identify a good number of degrees of freedom that
can express the artistic intent.
With our configurable joints, we can represent non-mechanical

entities for pre-build, and reconfigurable joints of existing robots
for post-build design optimizations (see Sec. 8). We can use them
to parameterize a component’s “length” (e.g., with a parameterized
prismatic joint), as well as the position and orientation of a me-
chanical joint or actuator. We assume our input robots to be fully
actuated, meaning that all actuated degrees of freedom can be in-
stantaneously and independently controlled. However, in contrast
to other techniques, we support overactuated systems and interface
with generic spatial input with kinematic loops.

In the sections that follow, we first discuss how we represent a
robot’s kinematics (Sec. 4), then introduce our design optimization
and fast solution strategy in Secs. 5 and 6. Thereafter, we discuss
our set of objectives for our two use cases (Sec. 7), before we discuss
results and conclude (Secs. 8 and 9).

4 REPRESENTING A ROBOT’S KINEMATICS
Before we discuss how we optimize a robot’s design, we briefly
review its representation.

State. A robot consists of a set of rigid components whose time-
varying states we represent with 7D vectors that encode their posi-
tions c and orientations q. For orientations, we rely on quaternions
and enforce their unit length with constraints of the form q · q = 1.
We use s to refer to the full state of a robot. Without loss of gen-
erality, we assume that all orientations are set to the identity in
the character’s initial or rest pose. This makes the formulation of
kinematic constraints easier.

4.1 Formulating Kinematic Constraints
Joints. Mechanical joints restrict the relative motion between

pairs of bodies,𝐴 and 𝐵. To formulate constraints, we define a frame
whose global position, x, coincides with the position of the joint in
the robot’s initial pose, and whose axes a𝑥 , a𝑦 , and a𝑧 align with its
degrees of freedom. Because we assume initial orientations to be set
to the identity, the local frame axes in the body coordinates of𝐴 and
𝐵 equal the global axes, and the local frame positions are x𝐴 = x−c𝐴
and x𝐵 = x − c𝐵 . We can then formulate constraints between pairs
of components as illustrated in Fig. 3 and summarized in Tab. 1,
Joints. This formulation is similar to previous work [Schumacher
et al. 2021].
We support all common joint types: Cartesian joints have three

translational degrees of freedom, and the more commonly used
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Fig. 3. Kinematic Constraints.We assume the orientations, q𝐴 and q𝐵 , of
the two bodies 𝐴 and 𝐵, to be set to the identity in the initial configuration,
exemplified here with a revolute joint, actuator, or configurable joint (top).
This convention ensures that the three frame axes, a𝑥 , a𝑦 , a𝑧 , are the same
in global and local body coordinates for a robot in its initial neutral pose,
simplifying the formulation of constraints. We use the global position of
the frame, x, to define the positions, x𝐴 and x𝐵 , in local body coordinates.
We support joint, actuator, and configurable joint types with varying trans-
lational and rotational degrees of freedom (bottom).

spherical joints have three rotational degrees of freedom. Cylindri-
cal joints and universal joints have two degrees of freedom, and
prismatic and revolute joints have a single translational or rota-
tional degree of freedom. We also support a fixed joint that locks the
relative motion between a pair of components. This is a useful joint
during design exploration, because it can be used to “freeze” degrees
of freedom between components, without having to merge them.
To prevent a robot from moving in space, we support a ground
joint which keeps a single component in its initial position and
orientation.

Actuators. For each mechanical joint, we formulate constraints
for a corresponding actuator. To this end, we complement the pas-
sive constraints with additional constraints, parameterizing them
with time-varying control parameters u (Tab. 1, Actuators). Once
we choose values for u, the relative states of the two components
that they connect are fully determined. While revolute or prismatic
actuators are widely used, spherical actuators exist but are rare.
The other actuators are useful to decouple a mechanism at an arbi-
trary set of mechanical joints, recording their motion, and treating
them as actuators with control parameters that we exclude from an
optimization to guarantee consistency.

Configurable Joints. To parameterize a robot’s kinematics, we
introduce an additional joint type that we refer to as configurable
joints. They are similar to actuators, but are parameterized with
design parameters p that remain the same throughout an anima-
tion, and don’t vary with time like control parameters do (Tab. 1,
Configurable Joints, u replaced with p).
Configurable joints provide a useful parameterization interface

for two reasons: (1) Mechanical engineers are used to designing
robots with mechanical joints and actuators. Configurable joints are
therefore a natural extension to create a parameterized robot design
using standard CAD modeling tools. (2) Configurable joints allow
us to parameterize the design of a robot before or after its built (see
Sec. 8).

Table 1. Joints, Actuators, and Configurable Joints constrain the relative
motion between pairs of components 𝐴 and 𝐵, whose states we represent
with 7-vectors s𝐴 and s𝐵 that encode the components’ positions, c𝐴 and
c𝐵 , and their orientations, q𝐴 and q𝐵 . We use the Euler-Rodrigues formula
to convert a unit-quaternion q to a rotation matrix R(q) and R(𝑢, a) to
represent a rotation by 𝑢 about axis a. R𝐴 and R𝐵 abbreviate R(q𝐴 ) and
R(q𝐵 ) . For cylindrical and prismatic joints, we define the difference vector
d = (R𝐴x𝐴 + c𝐴 ) − (R𝐵x𝐵 + c𝐵 ) . The Cartesian actuator or configurable
joint has three parameters, u, that determine the translations along the
three axes, A = [a𝑥 , a𝑦, a𝑧 ]. The spherical actuator or configurable joint is
parameterized with a quaternion u whose length we constrain to 1 during
optimizations. The cylindrical and universal actuators or configurable joints
are parameterized with two parameters, 𝑢1 and 𝑢2, and the prismatic and
revolute actuators or configurable joints with a single parameter 𝑢. The
fixed joint does not have a corresponding actuator or configurable joint,
because it already removes all degrees of freedom. The ground joint keeps a
single component fixed in space at its initial position c0 (and orientation
which is set to the identity). e𝑥 , e𝑦 , and e𝑧 are the three unit vectors.

Joints Actuators & Configurable Joints

Ca
rt
es
ia
n (R𝐴 a𝑥 ) · (R𝐵 a𝑦 )

(R𝐴 a𝑥 ) · (R𝐵 a𝑧 )
(R𝐴 a𝑦 ) · (R𝐵 a𝑧 )

(R𝐴 (x𝐴 + Au) + c𝐴 ) − (R𝐵x𝐵 + c𝐵 )
(R𝐴 a𝑥 ) · (R𝐵 a𝑦 )
(R𝐴 a𝑥 ) · (R𝐵 a𝑧 )
(R𝐴 a𝑦 ) · (R𝐵 a𝑧 )

sp
he
ric

al
(R𝐴x𝐴 + c𝐴 ) − (R𝐵x𝐵 + c𝐵 )

(R𝐴x𝐴 + c𝐴 ) − (R𝐵x𝐵 + c𝐵 )
(R𝐴 R(u) a𝑥 ) · (R𝐵 a𝑦 )
(R𝐴 R(u) a𝑥 ) · (R𝐵 a𝑧 )
(R𝐴 R(u) a𝑦 ) · (R𝐵 a𝑧 )

cy
lin

dr
ic
al d · (R𝐵a𝑦 )

d · (R𝐵a𝑧 )
(R𝐴 a𝑥 ) · (R𝐵 a𝑦 )
(R𝐴 a𝑥 ) · (R𝐵 a𝑧 )

(R𝐴 (x𝐴 + a𝑥𝑢1 ) + c𝐴 ) − (R𝐵x𝐵 + c𝐵 )
(R𝐴 a𝑥 ) · (R𝐵 a𝑦 )
(R𝐴 a𝑥 ) · (R𝐵 a𝑧 )

(R𝐴 R(𝑢2, a𝑥 ) a𝑦 ) · (R𝐵 a𝑧 )

un
iv
er
sa
l

(R𝐴x𝐴 + c𝐴 ) − (R𝐵x𝐵 + c𝐵 )
(R𝐴 a𝑥 ) · (R𝐵 a𝑦 )

(R𝐴x𝐴 + c𝐴 ) − (R𝐵x𝐵 + c𝐵 )
(R𝐴 a𝑥 ) · (R𝐵 a𝑦 )

(R𝐴 R(𝑢1, a𝑥 ) R(𝑢2, a𝑦 ) a𝑥 ) · (R𝐵 a𝑧 )
(R𝐴 R(𝑢1, a𝑥 ) R(𝑢2, a𝑦 ) a𝑦 ) · (R𝐵 a𝑧 )

pr
is
m
at
ic

d · (R𝐵a𝑦 )
d · (R𝐵a𝑧 )

(R𝐴 a𝑥 ) · (R𝐵 a𝑦 )
(R𝐴 a𝑥 ) · (R𝐵 a𝑧 )
(R𝐴 a𝑦 ) · (R𝐵 a𝑧 )

(R𝐴 (x𝐴 + a𝑥𝑢 ) + c𝐴 ) − (R𝐵x𝐵 + c𝐵 )
(R𝐴 a𝑥 ) · (R𝐵 a𝑦 )
(R𝐴 a𝑥 ) · (R𝐵 a𝑧 )
(R𝐴 a𝑦 ) · (R𝐵 a𝑧 )

re
vo
lu
te (R𝐴x𝐴 + c𝐴 ) − (R𝐵x𝐵 + c𝐵 )

(R𝐴 a𝑥 ) · (R𝐵 a𝑦 )
(R𝐴 a𝑥 ) · (R𝐵 a𝑧 )

R(q𝐴 )x𝐴 + c𝐴 − (R(q𝐵 )x𝐵 + c𝐵 )
(R𝐴 a𝑥 ) · (R𝐵 a𝑦 )
(R𝐴 a𝑥 ) · (R𝐵 a𝑧 )

(R𝐴 R(𝑢, a𝑥 ) a𝑦 ) · (R𝐵 a𝑧 )

fix
ed

(R𝐴x𝐴 + c𝐴 ) − (R𝐵x𝐵 + c𝐵 )
(R𝐴 a𝑥 ) · (R𝐵 a𝑦 )
(R𝐴 a𝑥 ) · (R𝐵 a𝑧 )
(R𝐴 a𝑦 ) · (R𝐵 a𝑧 )

gr
ou

nd

c − c0
(R e𝑥 ) · e𝑦
(R e𝑥 ) · e𝑧
(R e𝑦 ) · e𝑧

Constraints. Given an initial design of a robot in its rest configu-
ration, we create a set of constraints according to Tab. 1

C (p, u, s) = 0 (1)

that represents, together with the state of the components, the
kinematics of the robot. The above constraints include a unit length
constraint, q ·q−1 = 0, for each component of the robot. Given a set
of design and control parameters, we can use this set of constraints

4



Optimal Design of Robotic Character Kinematics Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

to solve for the state of the robot, s(p, u), and therefore to simulate
its kinematic motion.

5 OPTIMIZING A ROBOT’S DESIGN
Our goal is to optimize a character’s parameterized joints to achieve
a desired motion as closely as possible. Because optimal control
parameters change if we make adjustments to design parameters,
we need to solve for them simultaneously.

A second important point is that a design parameter change has
an effect on the entire motion of a robot, and we therefore need
to measure the performance of a particular design for an entire
animation to make an optimal choice.

While continuous formulations are elegant, we directly consider a
discretized problem statement that shares similarities with a discrete-
time optimal control problem. This choice is motivated by our obser-
vation that the numerical solution of a discrete-time problem is often
better behaved than the solution of its corresponding continuous-
time problem. The theory underlying discrete-time problems is also
well understood.

To this end, we discretize the target motion into 𝑛 time intervals
Δ𝑡 and𝑘 = 0, . . . , 𝑛 time steps, and introduce intermediate objectives,
𝑓 , that measure a robot’s performance with respect to a target
animation and ensure that actuator positions and velocities remain
within limits. To directly penalize actuator velocities near limits, we
introduce time-varying velocity variables v and set them to ¤u. We
also introduce a terminal objective 𝐹 that measures the difference
between a robot’s terminal state and its user-specified target. We
introduce our objectives in Sec. 7.

To minimize the number of optimization variables, we could work
with a single set of design parameters p. However, this choice results
in a Hessian of the Lagrangian which is no longer a banded matrix
due to sparsity along the time dimension. In addition, it would
prevent us from applying a fast solution strategy that is based on
dynamic programming, requiring a recursive structure and local
dependence between consecutive variables. We therefore work with
per-time-step design parameters p𝑘 , and enforce equality between
them with constraints p𝑘+1 = p𝑘 .

To ensure that orientations in our design and control parameteri-
zation are singularity-free, we use quaternions as control and design
parameters for spherical and ground actuators and reconfigurable
joints (see Tab. 1, right column). To enforce their unit length, we add
constraints, P(p0) = 0 and U (u𝑘 ) = 0, to the set of constraints.
Because we enforce equality between design parameters, we only
need to enforce their unit lengths at 𝑘 = 0.

Our discrete-time optimal design problem is therefore

min
p𝑘 ,u𝑘 ,v𝑘 ,s𝑘

𝑛−1∑︁
𝑘=0

𝑓 (p𝑘 , u𝑘 , v𝑘 , s𝑘 ) + 𝐹 (p𝑛, u𝑛, s𝑛) (2)

𝑠 .𝑡 . p𝑘+1 − p𝑘 = 0, 𝑘 = 0, . . . , 𝑛 − 1
u𝑘+1 − u𝑘

Δ𝑡
− v𝑘 = 0, 𝑘 = 0, . . . , 𝑛 − 1

P(p0) = 0

U (u𝑘 ) = 0, 𝑘 = 0, . . . , 𝑛
C (p𝑘 , u𝑘 , s𝑘 ) = 0, 𝑘 = 0, . . . , 𝑛.

6 SOLVING FOR A ROBOT’S OPTIMAL DESIGN
Our optimal design problem is difficult to solve: It has a design and
control parameter set per time step, and the constraints P, U, and
C , as also the intermediate and terminal objectives, are nonlinear.
A first solution strategy that comes to mind is sensitivity analysis

where we would solve for optimal states for a given set of design
and control parameters in the inner loop using Eq. 1, and then for
optimal design and control parameters in the outer loop, with a first-
order optimality constraint on the inner-loop optimization. This is,
however, not an option, because we can easily choose a set of design
and control parameters for which there is no inner-loop solution
that satisfies all kinematic constraints.

6.1 Formulating a Sequential Quadratic Program
An alternative solution strategy is sequential quadratic program-
ming (SQP) [Nocedal and Wright 2006]. To this end, we introduce
Lagrange multipliers 𝝀D

𝑘
, 𝝀V

𝑘
, 𝝀P

0 , 𝝀U
𝑘
, and 𝝀C

𝑘
for the five con-

straint sets and use 𝝀 to refer to the combined set of multipliers
(D: design constraints; V: velocity constraints). We then form the
Lagrangian

𝑛−1∑︁
𝑘=0

L𝑘 (p𝑘 , u𝑘 , v𝑘 , s𝑘 ,𝝀) + L𝑛 (p𝑛, u𝑛, s𝑛,𝝀), (3)

that is partially separable because the design and velocity con-
straints, that depend on two consecutive time steps, are linear and
can therefore be split into two parts.

To perform line search, we need to compute search directions

d𝑘 =


Δp𝑘
Δu𝑘
Δv𝑘
Δs𝑘

 for 𝑘 = 0, . . . , 𝑛 − 1 and d𝑘 =


Δp𝑘
Δu𝑘
Δs𝑘

 for 𝑘 = 𝑛.

by either applying Newton to the Karush–Kuhn–Tucker conditions,
or by solving the equivalent quadratic program (QP)

min
d𝑘

𝑛∑︁
𝑘=0

∇L𝑘d𝑘 + 1
2
d𝑇
𝑘
∇2L𝑘d𝑘 (4)

𝑠 .𝑡 . p𝑘+1 − p𝑘 + Δp𝑘+1 − Δp𝑘 = 0, 𝑘 = 0, . . . , 𝑛 − 1
u𝑘+1 − u𝑘

Δ𝑡
− v𝑘 + Δu𝑘+1 − Δu𝑘

Δ𝑡
− Δv𝑘 = 0, 𝑘 = 0, . . . , 𝑛 − 1

P
0 + P

0
p Δp0 = 0

U
𝑘 + U

𝑘
u Δu𝑘 = 0, 𝑘 = 0, . . . , 𝑛

C
𝑘 + C

𝑘
p Δp𝑘 + C

𝑘
u Δu𝑘 + C

𝑘
s Δs𝑘 = 0, 𝑘 = 0, . . . , 𝑛,

where we omit arguments for the last three sets of constraints,
adding the time step as superscript instead. Pp, Uu, Cp, Cu, and
Cs are constraint Jacobians with respect to design, control, and state
variables.

To iteratively find optimal values for these variables, we per-
form line search with the 𝐿1 merit function to identify a good step
length 𝛼 [Nocedal and Wright 2006], and update the currently best

5
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estimates
p𝑘
u𝑘
v𝑘
s𝑘

 :=


p𝑘
u𝑘
v𝑘
s𝑘

 + 𝛼d𝑘 and

p𝑛
u𝑛
s𝑛

 :=

p𝑛
u𝑛
s𝑛

 + 𝛼d𝑛 .

We also need to update Lagrange multipliers. To do so, we compute
an increment Δ𝝀, multiply it with the step length, and use it to
update the current best estimate 𝝀 as explained towards the end of
the section.

6.2 Fast Solution with Dynamic Programming
A common approach to compute the search directions for variables
and multipliers is to solve the QP by applying a direct sparse lin-
ear solver to the equivalent system of linear equations. For large
problems, this strategy is limited by its computational cost and the
memory that is necessary to assemble the system matrix.

Iterative solvers can circumvent the memory bottleneck by only
requiring access to a matrix-vector product operator, and can often
be parallelized. However, a careful tuning of tolerances and solver
parameters is generally needed. Moreover, QP solvers require the
problem to satisfy certain properties, for example positive definite-
ness of the unconstrained Hessian, which may not hold at a distance
from the optimum.

Crucially, an efficient solution strategy must exploit the recursive
structure of the problem: the Hessian of the Lagrangian is a banded
matrix, more specifically a tridiagonal block matrix because con-
straints depend on two consecutive time steps only; and the blocks
themselves are sparse.

An alternative strategy enabled by this recursive structure is the
use of dynamic programming. This strategy is less restrictive when
it comes to properties, and provides a direct solution strategy instead
of an iterative one, without requiring explicit assembly of the system
matrix. Our experiments confirm that this strategy outperforms a
sparse solution strategy on the full system in terms of robustness
and speed (Sec. 8).

Standard QP and Dynamic Programming. To apply dynamic pro-
gramming, we first need to bring the above QP into standard form
for a linear discrete-time optimal control problem [Gros and Diehl
2022]

min
s̃𝑘 ,ũ𝑘

𝑛−1∑︁
𝑘=0

[
s̃𝑘
ũ𝑘

]𝑇 [
Q̃𝑘 S̃𝑇

𝑘

S̃𝑘 R̃𝑘

] [
s̃𝑘
ũ𝑘

]
+ s̃𝑇𝑛 P̃𝑛 s̃𝑛 (5)

s.t. s̃𝑘+1 = Ã𝑘 s̃𝑘 + B̃𝑘 ũ𝑘 , 𝑘 = 0, . . . , 𝑛 − 1.

In this standard form, the “state” and “control” variables are s̃𝑘
and ũ𝑘 . The QP can then be solved with dynamic programming as
summarized in Alg. 2.
In the step-by-step derivation that follows, we reduce our QP

to this standard form, defining the matrices in the above standard
equations.

Definition of State and Control Variables. The linearized design and
control constraints in Eq. 4 depend on two consecutive time steps
and can easily be brought into standard form. Taking a closer look,
we realize that the design constraints depend on Δp𝑘 and Δp𝑘+1.

Algorithm 2. Solving a standardQP for a linear discrete-time optimal control
problem with dynamic programming. The initial state (or conditions) are
assumed to be known.

0. Set s̃0 to a constant value.

1. Evaluate P̃𝑛 .
2. Solve for P̃𝑘 backward in time, 𝑘 = 𝑛 − 1, . . . , 0:

P̃𝑘 := Q̃𝑘 + Ã𝑇
𝑘
P̃𝑘+1Ã𝑘

−
(
S̃𝑇
𝑘
+ Ã𝑇

𝑘
P̃𝑘+1B̃𝑘

) (
R̃𝑘 + B̃𝑇

𝑘
P̃𝑘+1B̃𝑘

)−1 (
S̃𝑘 + B̃𝑇

𝑘
P̃𝑘+1Ã𝑘

)
3. Solve for ũ𝑘 and s̃𝑘+1 forward in time, 𝑘 = 0, . . . , 𝑛 − 1:

ũ𝑘 (s̃𝑘 ) := −
(
R̃𝑘 + B̃𝑇

𝑘
P̃𝑘+1B̃𝑘

)−1 (
S̃𝑘 + B̃𝑇

𝑘
P̃𝑘+1Ã𝑘

)
s̃𝑘

s̃𝑘+1 = Ã𝑘 s̃𝑘 + B̃𝑘 ũ𝑘 (s̃𝑘 )

Analogously, we observe that the velocity constraints depend on the
control parameters at 𝑘 and 𝑘 + 1, but only on velocity variables at
𝑘 . We conclude that the design and control variables must be state
variables in the standard form, and the velocity variables take on
the role of control variables

s̃𝑘 :=


1
Δp𝑘
Δu𝑘

 and ũ𝑘 := Δv𝑘 . (6)

We added a leading 1 in the definition of states. This trick allows us
to combine the gradient and Hessian of the Lagrangian at 𝑘 into a
single quadratic form as required.

Removing Kinematic Constraints. Note that we omit the state
variables Δs𝑘 in the above definition of s̃𝑘 and ũ𝑘 . They only appear
in the linearized kinematic constraints that uniquely determine their
values for a given Δp𝑘 and Δu𝑘

Δs𝑘 = c𝑘 + P𝑘Δp𝑘 + U𝑘Δu𝑘
c𝑘 = −(C𝑘s )−1C𝑘

P𝑘 = −(C𝑘s )−1C𝑘p
U𝑘 = −(C𝑘s )−1C𝑘u,

(7)

where we assume that redundant constraints were removed from C

and the Jacobian C𝑘s to be a square matrix. By substituting Eq. 7 for
Δs𝑘 in the individual Lagrangian terms L𝑘 , we can remove these
variables and the kinematic constraints.

Removing Quaternion Unit Length Constraints. It remains to dis-
cuss the unit length constraints for design and control variables.
Let’s first consider the unit length constraints for the design pa-
rameters at 𝑘 = 0. By forming a singular value decomposition of
the Jacobian P0

p, we can represent the solutions that satisfy the
constraint with a reduced set of variables Δp̄0

Δp0 = yP0 + ZP
0 Δp̄0 with spec. sol. yP0 = −YP

0 (P0
pY

P
0 )−1

P
0, (8)

where [YP
0 |ZP

0 ] are the right singular vectors, with YP
0 correspond-

ing to non-zero singular values. For the control parameters at 𝑘 = 0,
we can proceed analogously. The reduced variables are incorporated
in the standard algorithm (Alg. 2, Eq. 5) by adding the equation
s̃0 := Ã−1s̃−1, with

Ã−1 :=


1 0 0
yP0 ZP

0 0
yU0 0 ZU

0

 and s̃−1 :=


1
Δp̄0
Δū0

 , (9)
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for 𝑘 = −1 to the set of constraints. Ã−1 represents a mapping from
reduced to full space. Note that s̃−1 represents design and control
variables at 𝑘 = 0 in reduced space, while s̃0 represents them in full
space.
The remaining unit quaternion constraints for 𝑘 = 1, . . . , 𝑛 are

less straightforward to remove. To do so, we need to look at the
velocity and unit quaternion constraints for control parameters
together, rearranging terms to align time steps

Δu𝑘+1 = Δu𝑘 + Δ𝑡Δv𝑘 − (u𝑘+1 − u𝑘 − Δ𝑡v𝑘 )

U
𝑘+1
u Δu𝑘+1 = −U𝑘+1, 𝑘 = 0, . . . , 𝑛 − 1.

A projection of control parameters onto a reduced set, Δū𝑘+1, as
above for 𝑘 = 0 is not an option, because the matrix ZU

𝑘+1 for a
singular value decomposition of the Jacobian U𝑘+1

u would appear
in front of a reduced set of control parameters Δū𝑘+1, and cannot
be brought to the other side because it is not a square matrix and
hence not invertible. This violates the recursion requirement for
dynamic programming.

An alternative is to work with reduced velocity variables. To this
end, we substitute the velocity equations for u𝑘+1 in the second
equation

U
𝑘+1
u Δv𝑘 = − 1

Δ𝑡
U

𝑘+1
u Δu𝑘 − V

𝑘

V
𝑘 :=

1
Δ𝑡

(
U

𝑘+1 + U
𝑘+1
u (u𝑘 − u𝑘+1 + Δ𝑡v𝑘 )

)
,

then represent the solutions with a reduced set Δv̄𝑘
Δv𝑘 = yU

𝑘+1 + XU
𝑘+1Δu𝑘 + ZU

𝑘+1Δv̄𝑘

with XU
𝑘+1 = − 1

Δ𝑡
YU
𝑘+1 (U

𝑘+1
u YU

𝑘+1)
−1

U
𝑘+1
u

and yU
𝑘+1 = −YU

𝑘+1 (U
𝑘+1
u YU

𝑘+1)
−1

V
𝑘 .

The subspace velocity equations then become

Δu𝑘+1 =

(
I + Δ𝑡 XU

𝑘+1

)
Δu𝑘 +

(
Δ𝑡 ZU

𝑘+1

)
Δv̄𝑘 (10)

− Δ𝑡yU
𝑘+1 + (u𝑘+1 − u𝑘 − Δ𝑡v𝑘 ) .

Note that we use reduced velocity variables Δv̄𝑘 instead of Δv𝑘 in
our control variables ũ𝑘 for all time steps 𝑘 .

Final Dynamic Programming Algorithm. The above derivations
result in a final algorithm and uniquely defined matrices Q̃𝑘 , S̃𝑘 ,
R̃𝑘 , P̃𝑛 , Ã𝑘 , and B̃𝑘 as summarized in Alg. 3 and Tab. 8 for the
reader’s convenience. In step 4 in Alg. 3, we solve for the state s̃−1
by minimizing the objective s̃𝑇 P̃−1s̃. This is necessary because the
standard algorithm (Alg. 2) assumes a given initial state s̃0, whereas
our design and control parameters at 𝑘 = 0 (and therefore, their
reduced versions at 𝑘 = −1) are unknowns. Taking into account the
leading 1 in our state representation, the minimization reduces to a
linear system of equations

min
s̃


1
Δp̄
Δū


𝑇

P̃−1


1
Δp̄
Δū

 with P̃−1 :=


0 p̃𝑇p p̃𝑇u
p̃p P̃pp P̃pu
p̃u P̃𝑇pu P̃uu

 (11)

⇔ s̃−1 :=
[
P̃pp P̃pu
P̃𝑇pu P̃uu

]−1 [
p̃p
p̃u

]
.

Algorithm 3. Final dynamic programming algorithm.

1. Evaluate P̃𝑛 .
2. Solve for P̃𝑘 backward in time, 𝑘 = 𝑛 − 1, . . . , 0:

P̃𝑘 := Q̃𝑘 + Ã𝑇
𝑘
P̃𝑘+1Ã𝑘

−
(
S̃𝑇
𝑘
+ Ã𝑇

𝑘
P̃𝑘+1B̃𝑘

) (
R̃𝑘 + B̃𝑇

𝑘
P̃𝑘+1B̃𝑘

)−1 (
S̃𝑘 + B̃𝑇

𝑘
P̃𝑘+1Ã𝑘

)
3. Evaluate P̃−1 := Ã𝑇

−1P̃0Ã−1 .
4. Evaluate s̃−1 := arg mins̃ s̃𝑇 P̃−1 s̃.
5. Evaluate s̃0 := Ã−1 s̃−1
3. Solve for s̃𝑘 and ũ𝑘 forward in time, 𝑘 = 0, . . . , 𝑛 − 1:

ũ𝑘 (s̃𝑘 ) := −
(
R̃𝑘 + B̃𝑇

𝑘
P̃𝑘+1B̃𝑘

)−1 (
S̃𝑘 + B̃𝑇

𝑘
P̃𝑘+1Ã𝑘

)
s̃𝑘

s̃𝑘+1 = Ã𝑘 s̃𝑘 + B̃𝑘 ũ𝑘 (s̃𝑘 )

Lagrange Multipliers. The output of Alg. 3 are search directions,
d𝑘 , for optimization variables, identical to the ones we would ob-
tained by solving the equivalent QP. To compute a corresponding
search direction, Δ𝝀, for the Lagrange multipliers, we expand the
first equation of the Karush–Kuhn–Tucker system that is equivalent
to the QP in Eq. 4, solving for the individual multiplier increments
by utilizing the recursive structure as summarized in Alg. 4. We
then perform the update of the current best multiplier estimates

𝝀D
𝑘

𝝀V
𝑘

𝝀U
𝑘

𝝀C
𝑘


:=


𝝀D
𝑘

𝝀V
𝑘

𝝀U
𝑘

𝝀C
𝑘


+ 𝛼


Δ𝝀D

𝑘

Δ𝝀V
𝑘

Δ𝝀U
𝑘

Δ𝝀C
𝑘


for 𝑘 = 1, . . . , 𝑛 − 1,

and 
𝝀D

0
𝝀V

0
𝝀P

0
𝝀U

0
𝝀C

0


:=


𝝀D

0
𝝀V

0
𝝀P

0
𝝀U

0
𝝀C

0


+ 𝛼


Δ𝝀D

0
Δ𝝀V

0
Δ𝝀P

0
Δ𝝀U

0
Δ𝝀C

0


,

[
𝝀U
𝑛

𝝀C
𝑛

]
:=

[
𝝀U
𝑛

𝝀C
𝑛

]
+ 𝛼

[
Δ𝝀U

𝑛

Δ𝝀C
𝑛

]

for the first and last time steps, with the step length 𝛼 .

Algorithm 4. Solving for Lagrange multiplier increments.

1. Compute h𝑘p , h𝑘u , h𝑘s , 𝑘 = 0, . . . , 𝑛 and h𝑘v , 𝑘 = 0, . . . , 𝑛 − 1:
h𝑘p := L𝑘

ppΔp𝑘 + L𝑘
puΔu𝑘 + L𝑘

pvΔv𝑘 + L𝑘
psΔs𝑘 + L𝑘

p , 𝑘 < 𝑛

h𝑛p := L𝑛
ppΔp𝑛 + L𝑛

puΔu𝑛 + L𝑛
psΔs𝑛 + L𝑛

p
h𝑘u := L𝑘

upΔp𝑘 + L𝑘
uuΔu𝑘 + L𝑘

uvΔv𝑘 + L𝑘
usΔs𝑘 + L𝑘

u , 𝑘 < 𝑛

h𝑛u := L𝑛
upΔp𝑛 + L𝑛

uuΔu𝑛 + L𝑛
usΔs𝑛 + L𝑛

u
h𝑘v := L𝑘

vpΔp𝑘 + L𝑘
vuΔu𝑘 + L𝑘

vvΔv𝑘 + L𝑘
vsΔs𝑘 + L𝑘

v , 𝑘 < 𝑛

h𝑘s := L𝑘
spΔp𝑘 + L𝑘

suΔu𝑘 + L𝑘
svΔv𝑘 + L𝑘

ssΔs𝑘 + L𝑘
s , 𝑘 < 𝑛

h𝑛s := L𝑛
spΔp𝑛 + L𝑛

suΔu𝑛 + L𝑛
ssΔs𝑛 + L𝑛

s
2. Compute Δ𝝀V

𝑘
= − 1

Δ𝑡 h𝑘v , 𝑘 = 0, . . . , 𝑛 − 1.

3. Compute Δ𝝀C
𝑘
=

(
C𝑘
s

)−𝑇
h𝑘s , 𝑘 = 0, . . . , 𝑛.

4. Solve for Δ𝝀D
𝑘

backward in time, 𝑘 = 𝑛 − 1, . . . , 0:

Δ𝝀D
𝑛−1 = h𝑛p −

(
C𝑛
p

)𝑇
Δ𝝀C

𝑛

Δ𝝀D
𝑘

= h𝑘+1
p −

(
C𝑘+1
p

)𝑇
Δ𝝀C

𝑘+1 + Δ𝝀D
𝑘+1

5. Compute Δ𝝀U
𝑘
, 𝑘 = 0, . . . , 𝑛:

Δ𝝀U
𝑘

=

(
U𝑘

u

(
U𝑘

u

)𝑇 )−1
U𝑘

u

(
h𝑘u −

(
C𝑘
u

)𝑇
Δ𝝀C

𝑘
+ Δ𝝀V

𝑘
− Δ𝝀V

𝑘−1

)
6. Solve for Δ𝝀P

0 =

(
P0

p

(
P0

p

)𝑇 )−1
P0

p

(
h0
p −

(
C0
p

)𝑇
Δ𝝀C

0 + Δ𝝀D
0

)

7
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6.3 Removing Redundancy in Kinematic Constraints
As mentioned earlier, we assume a non-redundant set of kinematic
constraints, as required for the Jacobian Cs to be invertible in Eq. 7.
Furthermore, sets of constraints with redundancy can yield an in-
feasible QP when linearized in Eq. 4. Unfortunately, robots with
kinematic loops often suffer from such redundancy.

For example, linkages are used to place actuators where there is
space, while they provide the source of motion where it is needed.
Linkages introduce redundancy. The simplest case to see this is a
four bar linkage: because we have four components, we have a total
of 28 state variables. With a quaternion unit length constraint per
component, we restrict 4 out of the 28 DoFs, leaving 6 DoFs per
component unconstrained. The linkage is driven by a revolute actu-
ator (6 constraints), has three revolute joints (3×5 = 15 constraints),
and we ground one component (6 constraints). We therefore have
a 28 dimensional state and a total of 31 constraints. Even though
we work with the minimal number of constraints when we con-
sider the degrees of freedom of individual joints and actuators, we
have, in general, more constraints than unknown states for general
robotic characters with kinematic loops. Because linkages are only
one source of redundancy in C, we need a general and automated
solution to remove unnecessary constraints.

Our constraint elimination process takes as input a reference state
s of the robot (e.g., its initial pose or first frame of an animation),
and automatically selects a non-redundant subset of constraints
in C so that this subset contains as many constraints as unknown
states in s. Because the behavior in a neighborhood of s needs to be
considered to choose the “right” subset, we rely on the Jacobian Cs.
However, before we compute the Jacobian that we use for anal-

ysis, we remove all actuators, replacing them with corresponding
passive joints. This is necessary because actuators, for a particular
set of control parameters u, hold the robot in the state s. We would
therefore not see the “mobility” of the robot in a neighborhood of s
if we analyzed the Jacobian of the actuated system directly. If we
analyze the Jacobian corresponding to the passive system, however,
we see the mobility of mechanical joints and actuators.

Before we analyze the Jacobian of the passive system, we normal-
ize each row. Each of its rows 𝑖 can be understood as a direction,
in the space of states s, along which the kinematic structure is im-
mobile. The mobility of the passive system is only possible along
directions orthogonal to every row. The goal is therefore to extract
a minimal subset of rows that form an as-orthogonal-as-possible
basis of the same initial space. Equivalently, after identifying and
removing redundant constraints, directions corresponding to the re-
moved rows must still be spanned by the remaining ones, to prevent
the introduction of undesired mobility. This motivates the following
selection process:

We first form the singular value decomposition of Cs, and extract
the left singular vectors Z that correspond to zero singular values,
such that Z𝑇 Cs = 0. Each row 𝑘 of these equations provide a linear
combination that evaluates to zero∑︁

𝑖

𝑧𝑖𝑘 (Cs)𝑖 = 0, (12)

where (Cs)𝑖 refers to row 𝑖 of the Jacobian. For any 𝑗 such that
𝑧 𝑗𝑘 ≠ 0, we can use equation 𝑘 in Eq.12 to eliminate constraint 𝑗

x(sk),A(sk)

x̂k, Âk

xrb

Arb

Fig. 4. Tracking Objectives. In a local coordinate frame of a rigid body
that we want to guide based on a target animation, we define the position
xrb and/or orientation Arb (left). The global motion over time of the position,
x(s𝑘 ) , and orientation, A(s𝑘 ) , are then used to define tracking objectives
based on the target positions, x̂𝑘 , and orientations, Â𝑘 (right).

that is already in the span of the other constraints

(Cs) 𝑗 = −
∑︁
𝑖≠𝑗

𝑧𝑖𝑘

𝑧 𝑗𝑘
(Cs)𝑖 . (13)

To prevent any unwanted mobility, we choose 𝑗 so that the con-
straint that is the “least” orthogonal to others, or the one that results
in the lowest right-hand-side coefficients in Eq. 12, is removed

𝑗 = argmin
𝑗

min
𝑘

∑︁
𝑖≠𝑗

𝑧2
𝑖𝑘

𝑧2
𝑗𝑘

. (14)

Note that we normalized the rows of the Jacobian to make the
coefficients comparable. After adding 𝑗 to the set of eliminated
constraints, we remove the corresponding equation 𝑘 , and subtract
it from the remaining equations

𝑧:𝑖 := 𝑧:𝑖 −
𝑧 𝑗𝑖

𝑧 𝑗𝑘
𝑧:𝑘 , (15)

setting coefficients 𝑧 𝑗𝑖 to zero that correspond to the eliminated
constraint 𝑗 . We iterate the process until we have used all equations
from Eq. 12.
The Jacobian of the subset of selected constraints has full row

rank, and if we add back the additional constraints that actuators
add, we get a square, full rank Jacobian for the actuated system.
The only exception is an overactuated robot where we have more
actuators than necessary. For overactuated robots, after removing
redundancy in the passive Jacobian, we repeat the above process, but
using the Jacobian of the actuated system with passive redundancy
removed and considering only actuation constraints for elimination.

7 EDITING AND DESIGN WITH OBJECTIVES
When editing the design of an existing robot, we first simulate its
kinematic motion and then record trajectories of points of interest.
By representing themwith spatial cubic Hermite splines, or applying
transformations to them, we can then edit the target motion, and
therefore the design of the robot. If we design a robot from scratch,
a rigged character can serve as a conceptual input, or mocap could
serve as a source of motion input.
Independent of the use case, we need to be able to track the

difference between the motion of points of interest on the robot and
user-provided target motion. To this end, we use tracking objectives
similar to the ones described in [Schumacher et al. 2021].
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Tracking Objectives. To measure a robot’s performance with re-
spect to user-specified targets, we support position and orientation
tracking, illustrated in Figure 4. A target trajectory either consists of
a target point, x̂𝑘 , or a target orientation, R̂𝑘 , for every time step 𝑘 ,
or a combination of the two. We then choose a position, xrb, and/or
orientation, Arb, in a local coordinate frame of a rigid body whose
motion the target trajectory shall guide. During optimization, we
transform the local position and orientation to global coordinates
using the body’s position c𝑘 and orientation q𝑘

x(s𝑘 ) = R(q𝑘 )xrb + c𝑘 and A(s𝑘 ) = R(q𝑘 )Arb,

then measure differences with our position and orientation objec-
tives

𝑓pos (sk) =
1
2
∥x(s𝑘 ) − x̂∥2

W and 𝑓ori (sk) =
1
2
𝑤ori



A(s𝑘 ) − Â𝑘



2
,

where we use the weighted norm with W = diag(𝑤𝑥 ,𝑤𝑦,𝑤𝑧) for
positions and weigh orientation objectives with𝑤ori. Note that these
weights can be set to non-constant values to emphasize preservation
of motion either spatially or temporally, or both. For every point
of interest, we add position and/or orientation objectives to our
intermediate and terminal objectives, 𝑓 and 𝐹 .

Kinematic Limits. We support position and velocity limits for
actuators, and position limits for reconfigurable joints. We enforce
them with a smooth barrier function

𝛽 (𝑥, 𝑥max, 𝜀) =
{
− log

( 𝑥max−𝑥
𝜀

)3 if 𝑥 ≥ 𝑥max − 𝜀

0 otherwise,
(16)

that becomes active if a value 𝑥 is less than an 𝜀 from either a user-
specified lower or upper limit 𝑥min or 𝑥max, resulting in our limits
objective

𝑓lim (𝑥) = 𝛽 (−𝑥,−𝑥min, 𝜀) + 𝛽 (𝑥, 𝑥max, 𝜀). (17)

For each component 𝑥 of our control parameters, uk and vk,
and our design parameters, pk, we add a limits objective to our
intermediate objective 𝑓 . For our terminal objective 𝐹 , we only add
position limits.

Regularization. To avoid ill-posed problems, we add regulariza-
tion terms

𝑓 Ureg (u𝑘 ) =
1
2
𝑤U
reg∥u𝑘 − u0

𝑘
∥2 and 𝑓 Preg (p𝑘 ) =

1
2
𝑤P
reg∥p𝑘 − p0∥2,

keeping control parameters close to an initial animation, u0
𝑘
, on

the unoptimized design, and design parameters close to their initial
values p0. For some examples, we observe that the nullspace in
design parameters can be large, requiring a higher weight for the
𝑤P
reg. This can have an effect on the quality of the result. To mitigate

its impact, we found that updating p0 with design parameters from
the last iterate in a decreasing frequency, i.e., at iterations 2, 4, 8,
16, etc., is effective, without a noticeable effect on convergence. The
regularization terms are added to both, 𝑓 and 𝐹 .

8 RESULTS
We demonstrate our method on four different mechanical models,
showcasing different applications and workflows that are covered
by our approach. We show physical prototypes for two of these
demonstrations.

For all demonstrators, we initialize control parameters with a
traditional IK solver [Schumacher et al. 2021] and set the Lagrange
multipliers to zero. While not safeguarding against convergence to
local minima, we observe that this initialization works well, even in
cases where the design changes are significant. As an illustration,
a comparative study of initial vs. optimized robot performance is
provided in Tab. 6.

Kickbot. As a first demonstrator, we consider a small humanoid
performing a kicking motion. The input is an animated character rig,
with standard spherical “actuators”. We seek to create a robot design
that is able to track this motion using a reduced set of optimally-
placed actuators.

initial design optimized design

mechanical design

Fig. 5. Kickbot. Parameterized mechanical model with 2-DoF ankles, hips,
and neck, 1-DoF knees and shoulders, and static arms (top). Design opti-
mization adjusts the parameters of the design (middle) in order to increase
the match to the motion targets (bottom). When visualizing the kinematics,
we show revolute actuators as red cylinders, and configurable revolute joints
in blue. Saturated joints and actuators have been parameterized and can
take on any orientation (as described in Fig. 2), while desaturated joints
and actuators are not parameterized.

9
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sequential IK global IK

Fig. 6. Kickbot with Velocity Limits.When velocity limits are imposed
during a sequential IK solve [Schumacher et al. 2021], the resulting motion
can lag behind the target animation, and fail to hit targets even when
large target weights are used (left). Our global formulation ensures that the
tracking error is distributed as well as possible throughout the animation.
Important poses can be assigned a large weight, and the optimization will
make sure to start moving into the poses early to work around the velocity
limits (right).

For the hip, we go from 3 DoFs in the input to 2 revolute actuators
in the robot, and for the shoulder, we go from a 3-DoF input to a
single revolute actuator. At the elbows, we only place a configurable
revolute joint, meaning that the elbows must remain fixed over time
but their angle can be optimized. For the initial design, the actuators
are naively oriented along one of the world axes. We parameterized
the orientation of all revolute actuators, with the exception of the
knees, by introducing configurable spherical joints on either side of
each actuator as illustrated in Fig. 2.

As seen in Fig. 5, and also the supporting video, the initial design
tracks the desiredmotion poorly. The optimized result is able to track
the desired motion well, despite the limited number of actuators.
A requirement for robot motions is that they should obey the

velocity limits of the actuators. To this end, we add velocity limits
to our model and rerun our optimization, only optimizing control
parameters. To ensure that the kickmotion does not becomewashed-
out, we increase the tracking weight on the kicking foot at the apex
of the motion. In contrast to sequential IK [Schumacher et al. 2021],
our approach considers jointly the full motion sequence, so it is able
to optimally distribute the error along the full sequence, and can
therefore hit the kicking pose as desired, shown in Fig. 6.

Legs. Another application of our pipeline is the optimization of
reconfigurable robot designs, where components can be reoriented
after the robot has been built. We consider a 6-DoF robot leg mech-
anism, with multiple nested kinematic loops. The mechanism is
overactuated (8 actuators) and also over-constrained (6 redundant
constraints). The robot has been designed so that one of the hip
joint axes is reconfigurable, as shown in Fig. 7. The height of the
physical robot is 1150 mm and it weighs 14.8 kg without base plate.
We wish to track an asymmetric twisting motion, which lies be-

yond the workspace of the initial robot design due to its position
limits. Our optimization is able to find a configuration of the re-
configurable joints which allows for the motion to be tracked, as
shown in Fig. 7, and also the supporting video. We demonstrate that
the resulting motion can be successfully executed on the physical

robot, after reconfiguration, and we can also execute other dancing
motions on this optimized design.

initial design optimized design

reconfigurable joints

in
it

ia
l

op
ti

m
iz

ed
Fig. 7. Legs. We consider a robot leg mechanism with closed-loop kine-
matics (top left) which has reconfigurable joints that can be repositioned
after the robot has been built (top right). The robot is overactuated, with 8
actuators and 6 degrees of freedom, and also overconstrained. We ask the
pelvis to track a twisting motion, which lies outside the workspace of the
initial design (middle left). The optimization reorients the reconfigurable
joints so that it can track the motion (middle right). Bottom row shows the
physical robot, in both the initial and optimized configurations. See also
the supporting video. We follow the same color scheme as Fig. 7 when visu-
alizing the kinematics, with actuators shown as red cylinders, configurable
joints shown in blue, and mechanical joints shown in green.

Bear. We also use our pipeline to design an animatronic bear that
does a swiping motion. We start with an animation rig and target
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motion, and an initial robot design where a single actuator is placed
at each rig joint. To give the robot mobility, we also add a single
joint at the ankle/wrist and two joints at the hips/shoulders for the 3
limbs which are fixed to the ground. This results in an over-actuated
design. We parameterize the orientation of all revolute joints and
actuators by introducing configurable spherical joints as illustrated
in Fig. 2.

We ask for the body and the free paw to track animation targets.
As seen in Fig. 8, the initial design tracks the targets poorly, with
significant tracking errors in parts of the motion. The optimization is
able to reorient the joints and actuators to give a design with greatly
improved tracking of the desired motion. See also the supporting
video.

Biker. Finally, we demonstrate the editing and iterative refine-
ment of a spatial 2-DoF biker mechanism, where we parameterize
the orientation of all revolute joints as illustrated in Fig. 2. We start
from an initial mechanism design created by a mechanical engineer,
and prescribe motion profiles for the two actuators. We run forward
kinematics on the initial design to extract motion profiles, which
we edit and subsequently use as optimization targets. Due to the
spatial nature of the design, small changes in the joint orientations
lead to significant and counter-intuitive changes in the resultant
motion, making this a challenging design space to navigate.

As seen in Fig. 9, the initial design has a limited torso roll, and an
asymmetric motion. To remedy this, we ask for a torso roll motion
which is symmetric and more pronounced. We also ask for the
motion profiles of the actuators to remain unchanged, forcing the
optimization to instead make changes to the design. It can be seen
that the optimized design is able to track the desired motion closely.
We can then refine our figure design by asking for the torso to

lean further forward. We still track a single frame at the torso, but
edit the pitch angle of the frame. The optimization is able to find a
solution which leans forward while maintaining the desired torso
roll motion.

To further refine the motion, we add additional objectives that ask
for the elbows to be brought closer to the body, and for the pitching
motion of the feet to be reduced. We then rerun our optimization.

Once we’re happy with the result, we can fabricate the optimized
design as shown in Fig. 9 and also the supporting video. The fabri-
cated robot is 355 mm tall.

Performance. A direct approach to solve the QP in Eq. 4 consists
in forming the equivalent linear system, and applying a generic
sparse solver. As an alternative, the method introduced in Sec. 6.2
directly exploits the problem structure, and avoids forming the full
system matrix, reducing the computational effort both in time and
memory. Key statistics for the different demonstrators are summa-
rized in Tab. 5, and a performance evaluation of our technique, in
comparison with a sparse direct solver, is provided in Tab. 7. Note
that our method and the sparse solver, that we use as a baseline,
compute search directions as solutions of the same QP, therefore
the convergence of the overall SQP approach is the same in both
cases.

Our optimizer was implemented in C++, relying on solvers from
the Eigen library for linear systems: SimplicialLDLT in Eq. 7; Jaco-
biSVD in Eq. 8; ConjugateGradient in Alg. 3 (with tolerance set to

machine precision to prevent error accumulation); and SparseLU
for our baseline direct solver. Computations were performed on a
machine with an Intel Core i7-7700 processor (4 cores, 4.2 GHz) and
32 GB of RAM.
To estimate how well our method scales with computationally

more challenging examples, in particular in comparison to a direct
sparse solver approach, we extend the animation of our biker exam-
ple to 6 and 10 cycles, increasing the number of control variables.
We refer to these examples as Biker ext. 1 and 2 in Tab. 7. A sparse
direct solver fails to solve the 10 cycle animation, because it runs out
of memory. An iterative solver, computing Hessian-vector products
on-the-fly, could alleviate this issue, but would unlikely be com-
petitive in time complexity, due to recomputations of derivatives
that are no longer stored. Our solution strategy, based on dynamic
programming, scales with animation length and complexity of the
robot, while a direct solver does not. Moreover, we observe that
our solver is more robust, and consistently faster, even for smaller
problems.

9 CONCLUSIONS
We have presented a method for optimizing the kinematics of ro-
bot characters, given an initial parameterized design and a desired
motion. The method supports robots with arbitrary spatial kinemat-
ics, including kinematic loops, overactuation, and overconstrained
designs, as shown with our demonstrators. By jointly solving for
the state, design and control parameters of the robot, we ensure
that optimized motions remain kinematically feasible and within
the actuator position and velocity limits.

To this end, we have also devised an approach for parameterizing
robot designs which is sufficiently general to handle a wide range
of practical design problems, including fully-parameterized new
robot designs and also the refinement of reconfigurable robot de-
signs. With our demonstrators, we have shown different examples
of workflows which are enabled by our tool, including the itera-
tive refinement of spatial linkages, as well as the design of new
robot characters. With physical examples, we have verified that our
method holds in practice.

9.1 Limitations and Future Work
Although not an issue for the demonstrators seen here, closed-loop
mechanisms may exhibit kinematic singularities, which could cause
unwanted mobility [Maloisel et al. 2021]. We leave the automated
detection and avoidance of singularities as future work.
We also did not implement an automated collision avoidance,

which is especially useful for design optimizations of reconfigurable
figures for which the component geometry is final. A penalty-based
approach is straightforward to integrate into our design optimiza-
tion.
In this work, we have solved a kinematics problem. A natural

extension to the work would be to tackle the dynamics problem. This
could open up exciting avenues, such as optimizing for robot designs
that exploit passive system dynamics to create more expressive
motions [Sun et al. 2023]. A dynamics formulation would also allow
for the optimization of underactuated and underconstrained robots.
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Table 5. Key specifications of the robots.

Comp. Joints Actuators Config. joints State vars. Cts. Redund. cts. Control vars. Design vars.
Ground Rev. Univ. Spher. Rev. Rev. Spher. Passive Active

Kickbot (1) 37 1 0 0 0 14 2 20 259 259 0 0 14 82
Kickbot (2) 15 1 0 0 0 14 0 0 105 105 0 0 14 0
Legs 26 1 14 4 4 8 2 0 182 190 6 2 8 2
Bear 53 1 9 0 0 12 0 33 371 374 0 3 12 132
Biker 40 1 15 0 3 2 0 23 280 280 0 0 2 92

Comp: number of components; Joints: number of joints (ground, revolute, universal or spherical); actuators: number of actuators (revolute); Config. joints: number of configurable joints (revolute or spherical);
State vars.: number of state variables; Cts: number of constraints; Redund. cts: number of redundant constraints (passive and active); Control vars.: number of control variables; Design vars.: number of design
variables.

Table 6. Performance statistics for key objectives.

Pos. error (cm) Ori. error (◦) Objective
Max. Avg. Max. Avg. improv.

Kickbot (1) Init. 26.3 7.3 126.7 49.5 93.82 %Opt. 8.8 2.2 49.4 14.4

Kickbot (2) Init. 26.7 3.2 57.0 16.0 67.02 %Opt. 13.8 2.3 45.2 13.7

Legs Init. 0.41 0.17 29.4 10.0 99.97 %Opt. 0.01 0.001 1.3 0.09

Bear Init. 7.0 1.1 27.3 5.9 78.31 %Opt. 3.7 0.6 18.3 3.7

Biker Init. 0.37 0.04 30.2 16.2 99.19 %Opt. 1.19 0.34 10.0 3.6

The max. and avg. errors are computed over all time steps and motion objectives (with
uniform weighting). The orientation error measures the angle of the rotation between
current and target frames. The objective improvement is the reduction of the overall
objective in Eq. 2, relative to its initial value.

Table 7. Key time performance statistics.

Steps Vars. Cts. It. #It. Total Sp. solver

Kickbot (1) 466 171 940 165 354 2.21s 29 1min 5s 10min 24s
Kickbot (2) 523 69 545 62 223 385ms 110 43.6s 3min 25s
Legs 120 23 992 23 030 162ms 15 2.60s 12.4s
Bear 101 53 215 51 904 1.20s 24 29.3s 5min 6s
Biker 120 45 118 44 809 742ms 7 5.29s 36.1s
Biker ext. 1 720 270 718 269 209 3.71s 7 26.3s 5min 36s
Biker ext. 2 1200 451 198 448 729 6.26s 7 44.4s N/A

Steps: number of time steps in the target animation; Vars.: number of optimization
variables; Cts.: number of optimization constraints; It.: average iteration time;
#It.: number of optimizer iterations; Total: total optimization time, with our dynamic
programming approach; Sp. solver: corresponding optimization time with a sparse
solver strategy. The Biker ext. 2 example (10 animation cycles) ran out of memory after
1 iteration in the sparse solver due to the size of the system matrix.

Our approach has tackled the design of robots for which a desired
motion is prescribed. However, one could also consider a design
problem for which a workspace is specified but the desired motion
is not known at design time. One approach here could be to study
sensitivities of a robot design in the neighborhood of a motion, but
it is also an open question how to best sample such a workspace.
Our work has focused on robots which are fixed to the ground.

An interesting avenue for future work would be to handle chang-
ing contact states with the environment, which would open up
avenues for the optimization of walking robots and also interactive
characters.
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APPENDIX
In Tab. 8, we provide expressions for the matrices in Alg. 3.

Table 8. Definition of Q̃𝑘 , S̃𝑘 , R̃𝑘 , P̃𝑛 , Ã𝑘 , and B̃𝑘 matrices. To keep the
notation concise, we omit the index 𝑘 in derivatives of the Lagrangian and
for matrices P, U, and c. For matrices X, Z, y, we omit the index 𝑘 + 1 and
the superscript U.

matrices

Q̃𝑘 =


0 q̃𝑇p q̃𝑇u
q̃p Q̃pp Q̃pu
q̃u Q̃𝑇

pu Q̃uu

 S̃𝑘 =
[
s̃v S̃𝑇pv S̃𝑇pu

]
R̃𝑘

P̃𝑛 =


0 p̃𝑇p p̃𝑇u
p̃p P̃pp P̃pu
p̃u P̃𝑇pu P̃uu

 Ã𝑘 =


1 0 0
ãp Ãpp 0
ãu 0 Ãuu

 B̃𝑘 =


0
0
b̃u


matrix entries

q̃p := (Lps + P𝑇Lss )c + (Lpv + P𝑇Lsv )y + Lp + P𝑇Ls
q̃u := (Lus + U𝑇Lss )c + (Luv + U𝑇Lsv )y + X𝑇 (Lvsc + Lvvy) + Lu + U𝑇Ls

+X𝑇Lv
Q̃pp := Lpp + LpsP + P𝑇Lsp + P𝑇LssP
Q̃pu := Lpu + LpsU + P𝑇Lsu + P𝑇LssU + (Lpv + P𝑇Lsv )X
Q̃uu := Luu + LusU + U𝑇Lsu + U𝑇LssU + (Luv + U𝑇Lsv )X

+X𝑇(Lvu + LvsU) + X𝑇LvvX

s̃v := Z𝑇(Lvsc + Lvvy + Lv )
S̃pv := (Lpv + P𝑇Lsv )Z
S̃uv := (Luv + U𝑇Lsv + X𝑇Lvv )Z

R̃𝑘 := Z𝑇LvvZ

p̃p := (Lps + P𝑇Lss )c + Lp + P𝑇Ls
p̃u := (Lus + U𝑇Lss )c + Lu + U𝑇Ls
P̃pp := Lpp + LpsP + P𝑇Lsp + P𝑇LssP
P̃pu := Lpu + LpsU + P𝑇Lsu + P𝑇LssU
P̃uu := Luu + LusU + U𝑇Lsu + U𝑇LssU

ãp := p𝑘 − p𝑘+1
ãu := Δ𝑡y + (u𝑘 + Δ𝑡v𝑘 − u𝑘+1 )
Ãpp := I
Ãuu := I + Δ𝑡 X

b̃u := Δ𝑡 Z
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Fig. 9. Biker. We start with an initial mechanism design, bottom left, together with prescribed motion profiles for the actuators. We then iteratively refine the
design, yielding the optimized result shown bottom center. We first consider the body roll (top row), which for the initial design has a limited range and
is asymmetric. We ask for a target roll motion which is symmetric and larger in amplitude, and also ask for the control input to remain unchanged. The
optimization is able to match the desired motion by changing the mechanism design. In a second design iteration (second row), we ask for the torso to lean
further forward. In a final iteration, we add additional tracking markers to the feet, where we ask for a reduced foot pitching motion, and the elbows, which we
ask to bring closer to the body. The optimized design can then be fabricated (bottom right). For visualizing the kinematics, we follow the same color scheme as
in the previous figures.
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